
PyPop User Guide
User Guide for Python for Population Genomics

Release 1.4.0

Alexander K. Lancaster
Mark P. Nelson

Diogo Meyer
Richard M. Single
Owen D. Solberg

Jan 20, 2026

PyPop User Guide: User Guide for Python for Population Genomics

Copyright © 2003-2009 Regents of the University of California.
Copyright © 2025 PyPop contributors.

Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documenta-
tion License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections no
Front-Cover Texts and no Back-Cover Texts. A copy of the license is included in the License chapter.

Document revision: 1.4.0.post3+g50a126480

CONTENTS

1 Installing PyPop 3
1.1 Quickstart Guide . 3
1.2 Examples . 3

Checking version and installation . 3
Run a minimal dataset: . 4

1.3 Detailed installation instructions . 4
Install Python 3 and pip . 4
Install package from PyPI . 4
Post-install PATH adjustments . 5
Uninstalling PyPop . 6

1.4 Support and development . 6

2 Getting started with PyPop 7
2.1 Introduction . 7
2.2 Running a population analysis . 7

Interactive mode (pypop-interactive) . 7
Command-line mode (pypop) . 9
Library (programmatic) mode . 10
What happens when you run PyPop? . 10

2.3 Aggregating results from multiple runs (popmeta) . 10
2.4 The data file . 11

Sample files . 11
Missing data . 13

2.5 The configuration file . 14
A simple configuration file . 14
Specifying data formats . 15
Analysis options . 16
Advanced options . 17
Advanced filtering sections . 19

2.6 PyPop API examples . 22
2.7 Command-line interfaces . 23

pypop usage . 23
popmeta usage . 25

3 Interpreting PyPop output 27
3.1 Population summary . 27
3.2 Single locus analyses . 28

Basic allele count information . 28
Chi-square test for deviation from Hardy-Weinberg proportions (HWP). 28
Exact test for deviation from HWP . 30
The Ewens-Watterson homozygosity test of neutrality . 30

i

3.3 Multi-locus analyses . 31
All pairwise LD . 31
Haplotype frequency estimation . 33

4 Contributing to PyPop 35
4.1 Reporting and requesting . 35

Did you find a bug? . 35
Documentation improvements . 36
Feature requests and feedback . 36

4.2 Making a code contribution . 36
Fork this repository . 37
Clone the main repository . 37
Make a new branch . 37
Build locally and make your changes . 37
Keep your branch in sync with upstream . 37
Use nox for testing and code quality . 38
Update AUTHORS.rst . 39
Make a Pull Request . 39

4.3 Installation for developers . 40
Install the build environment . 41
Build PyPop . 43

4.4 Install package from GitHub Releases . 44
4.5 Making a documentation or website contribution . 44

Overview . 45
Structure . 45
Modifying documentation . 46

4.6 Crediting contributors . 47
AUTHORS.rst, NEWS.md and GitHub Release Notes . 47
Authorship on Zenodo archives of releases . 47
Scientific publications (papers) . 48

5 Authors and history 49
5.1 PyPop contributors . 49

Third-party modules . 50
5.2 PyPop Release History . 50

1.4.0- 2026-01-19 . 50
1.3.1] - 2025-10-07 . 51
1.3.0] - 2025-09-08 . 51
1.2.2] - 2025-07-28 . 52
1.2.1] - 2025-04-29 . 52
1.2.0] - 2025-02-04 . 53
1.1.2] - 2024-11-18 . 54
1.1.1] - 2024-09-10 . 54
1.1.0] - 2024-05-30 . 55
1.0.2] - 2024-02-24 . 55
1.0.1] - 2024-02-11 . 55
1.0.0] - 2023-11-07 . 56
0.7.0] - 2008-09-09 . 58
0.6.0 - 2005-04-13 . 59
0.5.2 (public beta) - 2004-03-09 . 60
0.5.1 (public beta) - 2004-02-26 . 60
0.5 (public beta) - 2003-12-31 . 60
0.4.3beta . 61

6 Licenses 65

ii

https://github.com/alexlancaster/pypop/releases/tag/v1.4.0
https://github.com/alexlancaster/pypop/releases/tag/v1.3.1
https://github.com/alexlancaster/pypop/releases/tag/v1.3.0
https://github.com/alexlancaster/pypop/releases/tag/v1.2.2
https://github.com/alexlancaster/pypop/releases/tag/v1.2.1
https://github.com/alexlancaster/pypop/releases/tag/v1.2.0
https://github.com/alexlancaster/pypop/releases/tag/v1.1.2
https://github.com/alexlancaster/pypop/releases/tag/v1.1.1
https://github.com/alexlancaster/pypop/releases/tag/v1.1.0
https://github.com/alexlancaster/pypop/releases/tag/v1.0.2
https://github.com/alexlancaster/pypop/releases/tag/v1.0.1
https://github.com/alexlancaster/pypop/releases/tag/v1.0.0
https://github.com/alexlancaster/pypop/releases/tag/PYPOP_SRC-0_7_0

6.1 License terms for PyPop . 65
GNU General Public License . 65

6.2 License for PyPop documentation . 70
GNU Free Documentation License . 70

Bibliography 75

iii

PyPop User Guide, Release 1.4.0

PyPop (Python for Population Genomics) is an environment for doing large-scale population genetic analyses including:

• conformity to Hardy-Weinberg expectations

• tests for balancing or directional selection

• estimates of haplotype frequencies and measures and tests of significance for linkage disequilibrium (LD).

PyPop is an object-oriented framework implemented in Python1, but also contains C extensions for some computationally
intensive tasks. Output of analyses are stored in XML format for maximum downstream flexibility. PyPop also has an inter-
nal facility for additionally aggregating the output XML and generating output tab-separated (TSV) files, as well as well as
generating a default plain text file summary for each population.

Although it can be run on any kind of genotype data, it has additional support for analyzing population genotype with allelic
nomenclature from the human leukocyte antigen (HLA) region. An outline of PyPop can be found in our 2024 paper (Lancaster
et al., 2024), and two previous papers.

How to cite PyPop

If you write a paper that uses PyPop in your analysis, please cite both:

• our 2024 article2in Frontiers in Immunology:

Lancaster AK, Single RM, Mack SJ, Sochat V, Mariani MP, Webster GD. (2024) “PyPop: A ma-
ture open-source software pipeline for population genomics.” Front. Immunol. 15:1378512 doi:
10.3389/fimmu.2024.13785123

• and a citation to the Zenodo record4which includes a DOI for the version of the software you used in your analyses.
Citing this record and DOI supports reproducibility by allowing researchers to to determine the exact version of PyPop
used in any particular analysis. In addition, it allows retrieval of long-term software source-code archives, independent
of the original developers.

Here’s how to cite the correct version:

– If you have PyPop version 1.1.2 or later, currently installed, you can run:

pypop --citation

which outputs the Zenodo record citation in the simple “APA” format (you can also choose from BibTeX, EndNote,
RIS and other formats, see the section on command-line interfaces5in the User Guide for more details).

– If you do not have PyPop installed, have a release of PyPop earlier than 1.1.2, or otherwise want to obtain the DOI
and citation for specific versions, follow these steps:

1) First visit the DOI for the overall Zenodo record: 10.5281/zenodo.100806676. This DOI represents all ver-
sions, and will always resolve to the latest one.

2) When you are viewing the record, look for the Versions box in the right-sidebar. Here are listed all versions
(including older versions).

3) Select and click the version-specific DOI that matches the specific version of PyPop that you used for your
analysis.

CONTENTS 1

https://www.python.org/
https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1378512/full
https://doi.org/10.3389/fimmu.2024.1378512
https://zenodo.org/records/10080667
http://pypop.org/docs/guide-chapter-usage.html#command-line-interfaces
https://zenodo.org/doi/10.5281/zenodo.10080667

PyPop User Guide, Release 1.4.0

4) Once you are visiting the Zenodo record for the specific version, under the Citation box in the right-sidebar,
select the citation format you wish to use and click to copy the citation. It will contain link to the version-
specific DOI, and be of the form:

Lancaster, AK et al. (YYYY) “PyPop: Python for Population Genomics” (Version X.Y.Z) [Computer
software]. Zenodo. https://doi.org/10.5281/zenodo.XXXXX

Note that citation metadata for the current Zenodo record is also stored in CITATION.cff7

Two previous papers are also available (but not necessary to cite):

• Lancaster AK, Single RM, Solberg OD, Nelson MP, Thomson G (2007) “PyPop update - a software pipeline for large-
scale multilocus population genomics” Tissue Antigens 69 (s1), 192-197. [journal page8, preprint PDF (112 kB)9].

• Lancaster A, Nelson MP, Single RM, Meyer D, Thomson G (2003) “PyPop: a software framework for population
genomics: analyzing large-scale multi-locus genotype data”, in Pacific Symposium on Biocomputing vol. 8:514-525
(edited by R B Altman. et al., World Scientific, Singapore, 2003) [PubMed Central10, PDF (344 kB)11].

PyPop was originally developed for the analysis of data for the 13th International Histocompatiblity Workshop and Confer-
ence12held in Seattle, Washington in 2002 (Meyer et al., 2007, Single et al. 2007a, 2007b). For more details on the design
and technical details of PyPop, please consult Lancaster et al. (2003, 2007a, 2007b, 2024).

Acknowledgements

This work has benefited from the support of NIH grant AI49213 (13th IHW) and NIH/NIAID Contract number
HHSN266200400076C N01-AI-40076. Thanks to Steven J. Mack, Kristie A. Mather, Steve G.E. Marsh, Mark Grote and
Leslie Louie for helpful comments and testing.

How to use this guide

This guide to PyPop contains five main parts:

• Installing PyPop describes how to install PyPop, including pre-release binaries.

• Getting started with PyPop describes how to run PyPop.

• Interpreting PyPop output details the population genetic methods and statistics that PyPop computes.

• Contributing to PyPop details how to contribute to ongoing PyPop code and documentation.

• Authors and history acknowledges our contributors and project history.

References to the API Reference can be found in the PyPop API Reference: HTML13| PDF14

Notes
1. https://www.python.org/

2. https://www.frontiersin.org/journals/immunology/articles/10.3389/fimmu.2024.1378512/full

3. https://doi.org/10.3389/fimmu.2024.1378512

4. https://zenodo.org/records/10080667

5. http://pypop.org/docs/guide-chapter-usage.html#command-line-interfaces

6. https://zenodo.org/doi/10.5281/zenodo.10080667

7. https://github.com/alexlancaster/pypop/blob/main/CITATION.cff

8. http://dx.doi.org/10.1111/j.1399-0039.2006.00769.x

9. http://pypop.org/tissue-antigens-lancaster-2007.pdf

10. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891851/

11. http://pypop.org/psb-pypop.pdf

12. http://www.ihwg.org/

13. http://pypop.org/api

14. http://pypop.org/pypop-api-1.4.0.pdf

CONTENTS 2

https://doi.org/10.5281/zenodo.XXXXX
https://github.com/alexlancaster/pypop/blob/main/CITATION.cff
http://dx.doi.org/10.1111/j.1399-0039.2006.00769.x
http://pypop.org/tissue-antigens-lancaster-2007.pdf
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891851/
http://pypop.org/psb-pypop.pdf
http://www.ihwg.org/
http://www.ihwg.org/
http://pypop.org/api
http://pypop.org/pypop-api-1.4.0.pdf

CHAPTER

ONE

INSTALLING PYPOP

í Attention

The package name for installation purposes is pypop-genomics - to avoid conflicting with an unrelated package with the
name pypop already on PyPI1.

1.1 Quickstart Guide
Installing pypop-genomics

If you already have Python and pip installed, install using the following:

pip install pypop-genomics

Otherwise, follow these instructions to install Python 3 and pip.

Once pypop-genomics is installed, depending on your platform, you may also need to adjust your PATH environment variable.

Upgrading pypop-genomics

pip install -U pypop-genomics

Uninstalling pypop-genomics

pip uninstall pypop-genomics

For more, including handling common installation issues, see the detailed installation instructions .

Once you have installed pypop-genomics, you can move on to try some example runs.

1.2 Examples
These are examples of how to check that the program is installed and some minimal use cases.

Checking version and installation
pypop --version

This simply reports the version number and other information about PyPop, and indirectly checks that the program is installed.
If all is well, you should see something like:

3

https://pypi.org

PyPop User Guide, Release 1.4.0

pypop 1.0.0
[Python 3.10.9 | Linux.x86_64-x86_64 | x86_64]
Copyright (C) 2003-2006 Regents of the University of California.
Copyright (C) 2007-2023 PyPop team.
This is free software. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You can also run pypop --help to see a full list and explanation of all the options available.

Run a minimal dataset:
Download test .ini and .pop files: minimal.ini2and USAFEL-UchiTelle-small.pop3. You can then run them

pypop -c minimal.ini USAFEL-UchiTelle-small.pop

If you have already cloned the git repository and it is your working directory, you can simply run

pypop -c tests/data/minimal.ini tests/data/USAFEL-UchiTelle-small.pop

This will generate the following two files, an XML output file and a plain text version:

USAFEL-UchiTelle-small-out.xml
USAFEL-UchiTelle-small-out.txt

1.3 Detailed installation instructions
There are three main steps:

1. install Python and pip

2. install package from PyPI

3. adjusting your PATH variable after installation

Install Python 3 and pip
A full description of installing Python and pip on your system is beyond the scope of this guide, we recommend starting here:

https://wiki.python.org/moin/BeginnersGuide/Download

Here are some additional platform-specific notes that may be helpful:

• Most Linux distributions come with Python 3 preinstalled. On most modern systems, pip and python will default to
Python 3.

• MacOS 10.9 (Jaguar) up until 12.3 (Catalina), used to ship with Python 2 pre-installed, but it now has to be manually
installed. See the MacOS quick-start guide4in the official documentation for how to install Python 3. (Note that if Python
is installed on Mac via the MacOS developer tools, it may include the version 3 suffix on commands, e.g. python3 and
pip3, so modify the below, accordingly).

• For Windows, see also the Windows quick-start guide5in the official documentation. Running python in the Windows
command terminal in Windows 11 and later will launch the installer for the Microsoft-maintained Windows package of
Python 3.

Install package from PyPI
Once you have both python and pip installed, you can use pip to install pre-compiled binary “wheels” of pypop-genomics
directly from PyPI6.

1.3. Detailed installation instructions 4

https://raw.githubusercontent.com/alexlancaster/pypop/main/tests/data/minimal.ini
https://raw.githubusercontent.com/alexlancaster/pypop/main/tests/data/USAFEL-UchiTelle-small.pop
https://wiki.python.org/moin/BeginnersGuide/Download
https://docs.python.org/3/using/mac.html
https://docs.python.org/3/using/windows.html
https://pypi.org/

PyPop User Guide, Release 1.4.0

pip install pypop-genomics

Note

If, for whatever reason, you cannot use the these binaries (e.g. the pre-compiled binaries are not available for your platform),
you may need to follow the developer installation instructions7in the contributors guide.

Upgrade an existing PyPop installation

To update an existing installation to a newer version, use the same command as above, but add the --upgrade (short version:
-U) flag, i.e.

pip install -U pypop-genomics

Installing from Test PyPI

From time to time, we may make available packages on the Test PyPI8instance, rather than the through the main instance. The
above installation and updating instructions can be used, by appending the following:

--extra-index-url https://test.pypi.org/simple/

to the above pip commands.

Issues with installation permission

By default, pip will attempt to install the pypop-genomics package wherever the current Python installation is installed.
This location may be a user-specific virtual environment (like conda, see below), or a system-wide installation. On many
Unix-based systems, Python will generally already be pre-installed in a “system-wide” location (e.g. under /usr/lib) which
is read-only for regular users. (This can also be true for system-installed versions of Python on Windows and MacOS.)

When pip install cannot install in a read-only system-wide location , pip will gracefully “fall-back” to installing just for
you in your home directory (typically ~/.local/lib/python<VER> where <VER> is the version number of your current
Python). In general, this is what is wanted, so the above instructions are normally sufficient.

However, you can also explicitly set installation to be in the user directory, by adding the --user command-line option to the
pip install command, i.e.:

pip install pypop-genomics --user

This may be necessary in certain cases where pip install doesn’t install into the expected user directory.

Installing within a conda environment

In the special case that you installing from within an activated user-specific conda virtual environment that provides
Python, then you should not add the --user because it will install it in ~/.local/lib/ rather than under the user-specific
conda virtual environment in ~/.conda/envs/.

Post-install PATH adjustments
You may need to adjust the PATH settings (especially on Windows) for the pypop scripts to be visible when run from your
console application, without having to supply the full path to the pypop executable file.

í Warning

1.3. Detailed installation instructions 5

http://pypop.org/docs/guide-chapter-contributing.html#installation-for-developers
https://test.pypi.org/

PyPop User Guide, Release 1.4.0

Pay close attention to the “WARNINGS” that are shown during the pip installation, they will often note which directories
need to be added to the PATH.

• On Linux and MacOS, systems this is normally fairly simple and only requires edit of the shell .profile, or similar
and addition of the $HOME/.local/bin to the PATH variable, followed by a restart of the terminal.

• For Windows, however, as noted in most online instructions9, this may need additional help from your system adminis-
trator if your user doesn’t have the right permissions, and also require a system reboot.

Uninstalling PyPop
To uninstall the current version of pypop-genomics:

pip uninstall pypop-genomics

1.4 Support and development
Please submit any bug reports, feature requests or questions, via our GitHub issue tracker (see our bug reporting guidelines10for
more details on how to file a good bug report):

https://github.com/alexlancaster/pypop/issues

Please do not report bugs via private email to developers.

The development of the code for PyPop is via our GitHub project:

https://github.com/alexlancaster/pypop

Notes
1. https://pypi.org

2. https://raw.githubusercontent.com/alexlancaster/pypop/main/tests/data/minimal.ini

3. https://raw.githubusercontent.com/alexlancaster/pypop/main/tests/data/USAFEL-UchiTelle-small.pop

4. https://docs.python.org/3/using/mac.html

5. https://docs.python.org/3/using/windows.html

6. https://pypi.org/

7. http://pypop.org/docs/guide-chapter-contributing.html#installation-for-developers

8. https://test.pypi.org/

9. https://www.computerhope.com/issues/ch000549.htm

10. http://pypop.org/docs/guide-chapter-contributing.html#reporting-and-requesting

1.4. Support and development 6

https://www.computerhope.com/issues/ch000549.htm
http://pypop.org/docs/guide-chapter-contributing.html#reporting-and-requesting
https://github.com/alexlancaster/pypop/issues
https://github.com/alexlancaster/pypop

CHAPTER

TWO

GETTING STARTED WITH PYPOP

2.1 Introduction
You may use PyPop to analyze many different kinds of data, including allele-level genotype data (as in Listing 2.1), allele-level
frequency data (as in Listing 2.6), microsatellite data, SNP data, and nucleotide and amino acid sequence data.

As mentioned in the installation chapter, a minimal working example of a configuration file (.ini)1, and a population file (.pop)2,
can be found by clicking the respective links.

There are three ways to run PyPop:

• interactive mode (where the program will prompt you to directly type the input it needs); and

• command-line (or “batch”) mode (where you supply all the command line options the program needs).

• library (or “programmatic”) mode, by writing a Python program that uses the API Reference (API).

2.2 Running a population analysis
For the most simplest application of PyPop, where you wish to analyze a single population, the interactive mode is the simplest
to use. We will describe this mode, then describe command-line mode, and finally library mode.

Note

The following assumes you have already installed PyPop, done any post-install adjustments needed for your platform, and
verified that you can run the main commands (see the Examples section).

Interactive mode (pypop-interactive)
To run PyPop in interactive mode, with a minimal “GUI”, on Windows or MacOS, you can directly click on the
pypop-interactive file in the directory where the scripts were installed (see post-install adjustments).

You can also type pypop-interactive after starting a console application on all platforms (on MacOS and GNU/Linux, this
is normally the Terminal program, on Windows, it’s Command prompt).

In most cases, this will launch a console with the following:

PyPop: Python for Population Genomics (1.0.0)
[Python 3.10.9 | Linux.x86_64-x86_64 | x86_64]
Copyright (C) 2003-2006 Regents of the University of California
Copyright (C) 2007-2023 PyPop team.
This is free software. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You may redistribute copies of PyPop under the terms of the GNU

(continues on next page)

7

https://github.com/alexlancaster/pypop/blob/main/tests/data/minimal.ini
https://github.com/alexlancaster/pypop/blob/main/tests/data/USAFEL-UchiTelle-small.pop

PyPop User Guide, Release 1.4.0

(continued from previous page)
General Public License. For more information about these
matters, see the file named COPYING.

Select both an '.ini' configuration file and a '.pop' file via the
system file dialog.

Following this:

1. the system file dialog will appear prompting you to select an .ini configuration file.

2. a second system file dialog will prompt you for a .pop data file.

3. after both files are selected the console will display the processing of the file:

PyPop is processing sample.pop ...
PyPop run complete!
XML output(s) can be found in: ['sample-out.xml']
Plain text output(s) can be found in: ['sample-out.txt']
Press Enter to continue...

4. when the run is completed, the last line will prompt you to press Enter to leave the console window (highlighted above).

If the system file GUI dialog does not appear (e.g. if you are running on a terminal without a display), it will fall-back to
text-mode entry for the files, where you need to type the full (either relative or absolute) paths to the files. The output should
resemble:

PyPop: Python for Population Genomics (1.0.0)
[Python 3.10.9 | Linux.x86_64-x86_64 | x86_64]
Copyright (C) 2003-2006 Regents of the University of California
Copyright (C) 2007-2023 PyPop team.
This is free software. There is NO warranty; not even for
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You may redistribute copies of PyPop under the terms of the GNU
General Public License. For more information about these
matters, see the file named COPYING.

To accept the default in brackets for each filename, simply press
return for each prompt.

Please enter config filename [config.ini]: sample.ini
Please enter population filename [no default]: sample.pop
PyPop is processing sample.pop ...
PyPop run complete!
XML output(s) can be found in: ['sample-out.xml']
Plain text output(s) can be found in: ['sample-out.txt']
Press Enter to continue...

2.2. Running a population analysis 8

PyPop User Guide, Release 1.4.0

Note

Some messages with the prefix “LOG:” may appear during the console operation. They are informational only and do not
indicate improper operation of the program.

In both cases you should substitute the names of your own configuration (e.g., config.ini) and population file (e.g.,
Guatemalan.pop) for sample.ini and sample.pop (highlighted above). The formats for these files are described in the
sections on the data file and configuration file, below.

Command-line mode (pypop)
To run PyPop in the more common command-line (or “batch”) mode, you can run PyPop from the console (as noted above, on
Windows: open Command prompt, aka a “DOS shell”; on MacOS or GNU/Linux: open the Terminal application). Change
to a directory where your .pop file is located, and type the command:

pypop Guatemalan.pop

Command-line mode assumes two things: that you have a file called config.ini in your current folder and that you also
have your population file is in the current folder, otherwise you will need to supply the full path to the file. You can specify a
particular configuration file for PyPop to use, by supplying the -c option as follows:

pypop -c newconfig.ini Guatemalan.pop

Output to different directory

You may also redirect the output to a different directory (which must already exist) by using the -o option:

pypop -c newconfig.ini -o altdir Guatemalan.pop

Supplying multiple .pop files

If you have multiple .pop files with the same overall format (i.e. the same, or subset of, the loci listed in the .ini file), you
can process those in one pypop invocation using a single .ini file. You either supply them directly on the command-line:

pypop -c config.ini Guatemalan.pop NorthAmerican.pop

or you use the --filelist command-line option to pass in a file containing a list of files, i.e.:

pypop -c config.ini --filelist popfilelist.txt

where the text file popfilelist.txt contains a list of the .pop files to be processed on separate lines, e.g.:

Guatemalan.pop
NorthAmerican.pop

Changed in version 1.3.0

Changed in version 1.3.0: New behavior: all files within FILELIST will be resolved relative to relative to the parent
directory of FILELIST, not to the current working directory (the old behavior).

This ensures that files can be more straightforwardly located independently of where pypop is run from. For example,
if your current working directory looked like the following:

data/popfilelist.txt
data/file1.pop
data/file2.pop

2.2. Running a population analysis 9

PyPop User Guide, Release 1.4.0

You would run pypop like:

pypop -c config.ini --filelist data/popfilelist.txt

and the contents of popfilelist.txt should be:

file1.pop
file2.pop

Full absolute paths will be processed as-is, and will not be treated as if they are relative to the filelist.

Please see pypop usage for the full list of command-line options.

Library (programmatic) mode
It is also possible to use PyPop as a library (i.e. programmatically) by writing a Python program that uses the Application
Programming Interface documented in the API Reference (API) directly to analyze a population file. While the initial use-case
for PyPop was as a standalone command-line script, it is being upgraded for better use via a programmatic interface, much
functionality is exposed as Python modules and classes. Examples of programmatic use can be found in PyPop API examples.

What happens when you run PyPop?
The most common types of analysis will involve the editing of your config.ini file to suit your data (see the configuration
file) followed by the selection of either the interactive or command-line mode described above. If your input configuration
file is configfilename and your population file name is popfilename.txt the initial output will be generated quickly, but
your the PyPop execution will not be finished until the text output file named popfilename-out.txt has been created. A
successful run will produce two output files: popfilename-out.xml, popfilename-out.txt. A third output file will be
created if you are using the Anthony Nolan HLA filter option for HLA data to check your input for valid/known HLA alleles:
popfilename-filter.xml).

The popfilename-out.xml file is the primary output created by PyPop and the human-readable popfilename-out.txt
file is a summary of the complete XML output. The XML output can be further transformed into plain text TSV files, either
directly via pypop if invoked on multiple input files (using the --enable-tsv option, see pypop usage), or via the popmeta
tool that aggregates results from different pypop runs (see Aggregating results from multiple runs (popmeta)).

A typical PyPop run might take anywhere from a few of minutes to a few hours, depending on how large your data set is and
who else is using the system at the same time. Note that performing the allPairwiseLDWithPermu test may take several
days if you have highly polymorphic loci in your data set.

2.3 Aggregating results from multiple runs (popmeta)
The popmeta script can aggregate results from a number of output XML files from individual populations into a set of tab-
separated (TSV) files containing summary statistics via customized XSLT (eXtensible Stylesheet Language for Transforma-
tions) stylesheets. These TSV files can be directly imported into a spreadsheet or statistical software (e.g., R, SAS). In addition,
there is some preliminary support for export into other formats, such as the population genetic software (e.g., PHYLIP).

Here is an example of a popmeta run, following on from the XML outputs generated in similar fashion in the previous pypop
runs:

popmeta -o altdir Guatemalan-out.xml NorthAmerican-out.xml

This will generate a number of .tsv files, in the output directory altdir, of the form 1-locus-allele.tsv,
1-locus-summary.tsv, etc.

You can also supply a prefix to the command-line option --prefix-tsv so that all .tsv files are given a prefix, e.g.,

2.3. Aggregating results from multiple runs (popmeta) 10

PyPop User Guide, Release 1.4.0

popmeta -o altdir --prefix-tsv myoutput Guatemalan-out.xml NorthAmerican-out.xml

Will result in files with a prefix, e.g. myoutput-1-locus-allele.tsv.

Note

It’s highly recommended to use the -o option to save the output in a separate subdirectory, as the output .tsv files have
fixed names, and will overwrite any files in the local directory with the same name. See popmeta usage for the full list of
options.

Note that a similar effect can be achieved directly from a pypop run (assuming that the configuration file can be used for both
.pop population files), by invoking pypop with the --enable-tsv option:

pypop -c newconfig.ini -o altdir Guatemalan.pop NorthAmerican.pop --enable-tsv

2.4 The data file

Sample files
Data can be input either as genotypes, or in an allele count format, depending on the format of your data.

Data files are tab-delimited

These population files are plain text files, such as you might save out of the Notepad application on Windows (or Emacs).
The columns are all tab-delimited, so you can include spaces in your labels. If you have your data in a spreadsheet appli-
cation, such as Excel or LibreOffice, export the file as tab-delimited text, in order to use it as PyPop data file.

Depending on how you are viewing this documentation, in some of the examples below, the columns may not appear to
align with their headers, but that is purely due to how tabstops are rendered. If you copy-and-paste the data into a text
editor you should be able to see that the columns are tab separated.

As you will see in the following examples, population files begin with header information. In the simplest case, the first line
contains the column headers for the genotype, allele count, or, sequence information from the population. If the file contains a
population data-block, then the first line consists of headers identifying the data on the second line, and the third line contains
the column headers for the genotype or allele count information.

Note that for genotype data, each locus corresponds to two columns in the population file. The locus name must repeated, with
a suffix such as _1, _2 (the default) or _a, _b and must match the format defined in the config.ini (see validSampleFields).
Although PyPop needs this distinction to be made, phase is NOT assumed, and if known it is ignored.

Listing 2.7 shows the relevant lines for the configuration to read in the data shown in Listing 2.1 and Listing 2.2.

Listing 2.1: Multi-locus allele-level genotype data
a_1 a_2 c_1 c_2 b_1 b_2
**** **** 01:02 02:10:06 13:01 18:01:02
01:01 02:01 03:07 06:05 14:01 39:02:01
02:10 03:01:02 07:12 01:02 15:20 13:01
01:01 02:18 08:04 12:02 35:09:01 40:05
25:01 02:01 15:07 03:07 51:01:03 14:01
02:10 32:04 18:01 01:02 78:02:01 13:01
03:01:02 32:04 15:07 06:05 51:01:03 39:02:01

This is an example of the simplest kind of data file.

2.4. The data file 11

PyPop User Guide, Release 1.4.0

Listing 2.2: Multi-locus allele-level HLA genotype data with sample in-
formation

populat id a_1 a_2 c_1 c_2 b_1 b_2
UchiTelle UT900-23 **** **** 01:02 02:10:06 13:01 18:01:02
UchiTelle UT900-24 01:01 02:01 03:07 06:05 14:01 39:02:01
UchiTelle UT900-25 02:10 03:01:02 07:12 01:02 15:20 13:01
UchiTelle UT900-26 01:01 02:18 08:04 12:02 35:09:01 40:05
UchiTelle UT910-01 25:01 02:01 15:07 03:07 51:01:03 14:01
UchiTelle UT910-02 02:10 32:04 18:01 01:02 78:02:01 13:01
UchiTelle UT910-03 03:01:02 32:04 15:07 06:05 51:01:03 39:02:01

This example shows a data file which has non-allele data in some columns, here we have population (populat) and sample
identifiers (id).

Listing 2.3: Multi-locus allele-level HLA genotype data with sample and
header information

labcode method ethnic contin collect latit longit
USAFEL 12th Workshop SSOP Telle NW Asia Targen Village 41 deg 12 min N ␣
→˓ 94 deg 7 min E
populat id a_1 a_2 c_1 c_2 b_1 b_2
UchiTelle UT900-23 **** **** 01:02 02:10:06 13:01 18:01:02
UchiTelle UT900-24 01:01 02:01 03:07 06:05 14:01 39:02:01
UchiTelle UT900-25 02:10 03:01:02 07:12 01:02 15:20 13:01
UchiTelle UT900-26 01:01 02:18 08:04 12:02 35:09:01 40:05
UchiTelle UT910-01 25:01 02:01 15:07 03:07 51:01:03 14:01
UchiTelle UT910-02 02:10 32:04 18:01 01:02 78:02:01 13:01
UchiTelle UT910-03 03:01:02 32:04 15:07 06:05 51:01:03 39:02:01

This is an example of a data file which is identical to Listing 2.2, but which includes population level information.

Listing 2.4: Multi-locus allele-level HLA genotype and microsatellite
genotype data with header information

labcode ethnic complex
USAFEL **** 0
populat id drb1_1 drb1_2 dqb1_1 dqb1_2 d6s2222_1 d6s2222_2
UchiTelle HJK_2 01 03:01 02:01 05:01 249 249
UchiTelle HJK_1 03:01 03:01 02:01 02:01 249 249
UchiTelle HJK_3 01 03:01 02:01 05:01 249 249
UchiTelle HJK_4 01 03:01 02:01 05:01 249 249
UchiTelle MYU_2 02 04:01 03:02 06:02 247 249
UchiTelle MYU_1 03:01 03:01 02:01 02:01 247 249
UchiTelle MYU_3 03:01 04:01 02:01 03:02 249 249
UchiTelle MYU_4 03:01 04:01 02:01 03:02 247 249

This example mixes different kinds of data: HLA allele data (from DRB1 and DQB1 loci) with microsatellite data (locus
D6S2222).

Listing 2.5: Sequence genotype data with header information
labcode file
BLOGGS C_New
popName ID TGFB1cdn10(1) TGFB1cdn10(2) TGFBhapl(1) TGFBhapl(2)
Urboro XQ-1 C T CG TG
Urboro XQ-2 C C CG CG
Urboro XQ-5 C T CG TG
Urboro XQ-21 C T CG TG
Urboro XQ-7 C T CG TG
Urboro XQ-20 C T CG TG
Urboro XQ-6 T T TG TG
Urboro XQ-8 C T CG TG

(continues on next page)

2.4. The data file 12

PyPop User Guide, Release 1.4.0

(continued from previous page)
Urboro XQ-9 T T TG TG
Urboro XQ-10 C T CG TG

This example includes nucleotide sequence data: the TGFB1CDN10 locus consists of one nucleotide, the TGFBhapl locus is
actually haplotype data, but PyPop simply treats each combination as a separate “allele” for subsequent analysis.

Listing 2.6: Allele count data
populat method ethnic country latit longit
UchiTelle PCR-SSO Klingon QZ 052.81N 100.25E
dqa1 count
01:01 31
01:02 37
01:03 17
02:01 21
03:01 32
04:01 9
05:01 35

PyPop can also process allele count data. However, you cannot mix allele count data and genotype data together in the one
file.

Note

Currently each .pop file can only contain allele count data for one locus. In order to process multiple loci for one population
you must create a separate .pop for each locus.

Missing data
Untyped or missing data may be represented in a variety of ways. The default value for untyped or missing data is a series of
four asterisks (****) as specified by the config.ini. You may not “represent” untyped data by leaving a column blank, nor
may you represent a homozygote by leaving the second column blank. All cells for which you have data must include data,
and all cells for which you do not have data must also be filled in, using a missing data value.

For individuals who were not typed at all loci, the data in loci for which they are typed will be used on all single-locus analyses
for that individual and locus, so that you see the value of the number of individuals (n) vary from locus to locus in the output.
These individuals’ data will also be used for multi-locus analyses. Only the loci that contain no missing data will be included
in any multi-locus analysis.

If an individual is only partially typed at a locus, it will be treated as if it were completely untyped, and data for that individual
for that locus will be dropped from ALL analyses.

2.4. The data file 13

PyPop User Guide, Release 1.4.0

í Warning

• Do not leave trailing blank lines at the end of your data file, as this currently causes PyPop to terminate with an error
message that takes experience to diagnose.

• For haplotype estimation and linkage disequilibrium calculations (i.e., the emhaplofreq part of the program) you are
currently restricted to a maximum of seven loci per haplotype request. For haplotype estimation there is a limit of
5000 for the number of individuals (n) 3

2.5 The configuration file
The sets of population genetic analyses that are run on your population data file and the manner in which the data file is
interpreted by PyPop is controlled by a configuration file, the default name for which is config.ini. This is another plain
text file consisting of comments (which are lines that start with a semi-colon), sections (which are lines with labels in square
brackets), and options (which are lines specifying settings relevant to that section in the option=value format).

Note

If any option runs over one line (such as validSampleFields) then the second and subsequent lines must be indented by
exactly one space.

A simple configuration file
Here we present a simple .ini file corresponding to Listing 2.1 (Note comment lines have been omitted in the above example
for clarity). After this we review the sections that are highlighted in the example below, starting with general settings, followed
by how to specify data formats and then Analysis options.

Descriptions of more advanced options for the previously described sections and additional filtering sections are contained in
Advanced options and Advanced filtering sections, respectively.

Listing 2.7: Minimal config.ini file
[General]
debug=0

[ParseGenotypeFile]
untypedAllele=****
alleleDesignator=*
validSampleFields=*a_1
*a_2
*c_1
*c_2
*b_1
*b_2

[HardyWeinberg]
lumpBelow=5

[HardyWeinbergGuoThompson]
dememorizationSteps=2000
samplingNum=1000
samplingSize=1000

[HomozygosityEWSlatkinExact]
numReplicates=10000

[Emhaplofreq]
allPairwiseLD=1

(continues on next page)

2.5. The configuration file 14

PyPop User Guide, Release 1.4.0

(continued from previous page)
allPairwiseLDWithPermu=0
;;numPermuInitCond=5

[General] settings

This section contains variables that control the overall behavior of PyPop. Additional variables are described in [General]
advanced options.

• debug=0

This setting enables verbose debugging messages. Setting it to 1 will generate output that can be useful in diagnosing
problems. PyPop developers may ask you to enable it when reporting on problems on the issue tracker.

Specifying data formats
There are two possible formats: [ParseGenotypeFile] and [ParseAlleleCountFile]

[ParseGenotypeFile]

If your data is genotype data, you will want a section labeled: [ParseGenotypeFile] (as shown in the Minimal config.ini
file).

• alleleDesignator

This option is used to tell PyPop what is allele data and what isn’t. You must use this symbol in
:ref:`validSampleFields option. The default is * In general, you won’t need to change it. [Default: *]

• untypedAllele

This option is used to tell PyPop what symbol you have used in your data files to represent untyped or unknown data
fields. These fields MAY NOT BE LEFT BLANK. You must use something consistent that cannot be confused with
real data here. [Default: ****]

• validSampleFields

This option should contain the names of the loci immediately preceding your genotype data (if it has three header lines,
this information will be on the third line, otherwise it will be the first line of the file).[There is no default, this option
must always be present]

The format is as follows, for each sample field (which may either be an identifying field for the sample such as populat,
or contain allele data) create a new line where:

– The first line (validSampleFields=) consists of the name of your sample field (if it contains allele data, the name
of the field should be preceded by the character designated in the alleleDesignator option above).

– All subsequent lines after the first must be preceded by one space (again if it contains allele data, the name of the
field should be preceded by the character designated in the alleleDesignator option above).

Here is an example:

validSampleFields=*a_1
*a_2
*c_1
*c_2
*b_1
*b_2 # Note initial space at start of line.

Here is example that includes identifying (non-allele data) information such as sample id (id) and population name
(populat):

2.5. The configuration file 15

PyPop User Guide, Release 1.4.0

validSampleFields=populat
id
*a_1
*a_2
*c_1
*c_2
*b_1
*b_2

[ParseAlleleCountFile]

If your data is not genotype data, but rather, data of the allele-name count format, then you will want to use the
[ParseAlleleCountFile] section INSTEAD of the [ParseGenotypeFile] section. The alleleDesignator and
untypedAllele options work identically to that described for [ParseGenotypeFile].

• validSampleFields

This option should contain either a single locus name or a colon-separated list of all loci that will be in the data files you
intend to analyze using a specific .ini file. The colon-separated list allows you to avoid changing the .ini file when
running over a collection of data files containing different loci. e.g.,

validSampleFields=A:B:C:DQA1:DQB1:DRB1:DPB1:DPA1
count

Note that each .pop file must contain only one locus (see the note in Listing 2.6). Listing multiple loci simply permits
the same .ini file to be reused for each data file.

Analysis options
These sections describe the primary analysis options that can be enabled for PyPop, as they are used in the simple example,
above.

[HardyWeinberg]

Hardy-Weinberg analysis is enabled by the presence of this section.

• lumpBelow

This option value represents a cut-off value. Alleles with an expected value equal to or less than lumpBelow will be
lumped together into a single category for the purpose of calculating the degrees of freedom and overall p-value for the
chi-squared Hardy-Weinberg test.

[HardyWeinbergGuoThompson]

When this section is present, an implementation of the Hardy-Weinberg exact test is run using the original Guo and Thompson
(1992) code, using a Monte-Carlo Markov chain (MCMC). In addition, two measures (Chen and Diff) of the goodness of it
of individual genotypes are reported under this option (Chen et al., 1999). By default this section is not enabled. This is a
different implementation to the Arlequin version listed in Advanced options, below.

• dememorizationSteps

Number of steps of to “burn-in” the Markov chain before statistics are collected.[Default: 2000]

• samplingNum

Number of Markov chain samples [Default: 1000].

• samplingSize

Markov chain sample size[Default: 1000].

2.5. The configuration file 16

PyPop User Guide, Release 1.4.0

Note that the total number of steps in the Monte-Carlo Markov chain is the product of samplingNum and samplingSize, so
the default values described above would contain 1,000,000 (= 1000 x 1000) steps in the MCMC chain.

The default values for options described above have proved to be optimal for us and if the options are not provided these
defaults will be used. If you change the values and have problems, please let us know.

[HomozygosityEWSlatkinExact]

The presence of this section enables Slatkin’s (1994) implementation of the Ewens-Watterson exact test of neutrality.

• numReplicates

The default values have proved to be optimal for us. There is no reason to change them unless you are particularly
curious. If you change the default values and have problems, please let us know.

[Emhaplofreq]

The presence of this section enables haplotype frequency estimation and calculation of linkage disequilibrium (LD) measures.
Please note that PyPop assumes that the genotype data is unphased when estimating haplotype frequencies and LD measures.

• lociToEstHaplo

In this option you can list the multi-locus haplotypes for which you wish the program to estimate and to calculate the
LD. It should be a comma-separated list of colon-joined loci. e.g.,

lociToEstHaplo=a:b:drb1,a:b:c,drb1:dqa1:dpb1,drb1:dqb1:dpb1

• allPairwiseLD

Set this to 1 (one) if you want the program to calculate all pairwise LD for your data, otherwise set this to 0 (zero).

• allPairwiseLDWithPermu

Set this to a positive integer greater than 1 if you need to determine the significance of the pairwise LD measures in the
previous section. The number you use is the number of permutations that will be run to ascertain the significance (this
should be at least 1000 or greater). (Note this is done via permutation testing performed after the pairwise LD test for
all pairs of loci. Note also that this test can take DAYS if your data is highly polymorphic.)

• numPermuInitCond

Set this to change the number of initial conditions used per permutation. [Default: 5]. (Note: this parameter is only
used if allPairwiseLDWithPermu is set and nonzero).

Advanced options
The following section describes additional options to previously described sections. Most of the time these options can be
omitted and PyPop will choose defaults, however these advanced options do offer greater control over the application. In
particular, customization will be required for data that has sample identifiers as in Listing 2.2 or header data block as in Listing
2.3 and both validSampleFields (described above) and validPopFields (described below) will need to be modified.

Deprecated since version 1.0.0

Deprecated since version 1.0.0: The sections [Arlequin] and [HardyWeinbergGuoThompsonArlequin] related
to the Arlequin program as they are currently unmaintained.

[General] advanced options

• txtOutFilename and xmlOutFilename

2.5. The configuration file 17

PyPop User Guide, Release 1.4.0

If you wish to specify a particular name for the output file, which you want to remain identical over several runs, you
can set these two items to particular values. The default is to have the program select the output filename, which can be
controlled by the next variable. [Default: not used]

• outFilePrefixType

This option can either be omitted entirely (in which case the default will be filename) or be set in several ways. The de-
fault is set as filename, which will result in three output files named original-filename-minus-suffix-out.xml,
original-filename-minus-suffix-out.txt, and original-filename-minus-suffix-filter.xml. [De-
fault: filename]

If you set the value to date instead of filename, you’ll get the date incorporated in the file-
name as follows: original-filename-minus-suffix-YYYY-nn-dd-HH-MM-SS-out.xml,txt. e.g.,
USAFEL-UchiTelle-2003-09-21-01-29-35-out.xml (where Y, n, d, H, M, S refer to year, month, day, hour,
minute and second, respectively).

• xslFilename

This option specifies where to find the XSLT file to use for transforming PyPop’s xml output into human-readable form.
Most users will not normally need to set this option, and the default is the system-installed text.xsl file.

[ParseGenotypeFile] advanced options

• fieldPairDesignator

This option allows you to override the coding for the headers for each pair of alleles at each locus; it must match the
entry in the config file under validSampleFields and the entries in your population data file. If you want to use
something other than _1 and _2, change this option, for instance, to use letters and parentheses, change it as follows:
fieldPairDesignator=(a):(b) [Default: _1:_2]

• popNameDesignator

There is a special designator to mark the population name field, which is usually the first field in the data block. [Default:
+]

If you are analyzing data that contains a population name for each sample, then the first entry in your
validSampleFields section should have a prefixed +, as below:

validSampleFields=+populat
*a_1
*a_2
...

• validPopFields

If you are analyzing data with an initial two line population header block information as in Multi-locus allele-level HLA
genotype data with sample and header information, then you will need to set this option. In this case, it should contain
the field names in the first line of the header information of your file. [Default: required when a population data-block
is present in data file], e.g.:

validPopFields=labcode
method
ethnic
country
latit
longit

2.5. The configuration file 18

PyPop User Guide, Release 1.4.0

[Emhaplofreq] advanced options

• permutationPrintFlag

í Warning

If permutationPrintFlag is enabled it can drastically increase the size of the output XML file on the order of
the product of the number of possible pairwise comparisons and permutations. Machines with lower RAM and disk
space may have difficulty coping with this.

Determines whether the likelihood ratio for each permutation will be logged to the XML output file, this is disabled by
default. [Default: 0 (i.e. OFF)].

Deprecated since version 1.0.0

Deprecated since version 1.0.0: currently unmaintained and untested.

[Arlequin] extra section

This section sets characteristics of the Arlequin application if it has been installed (it must be installed separately
from PyPop as we cannot distribute it). The options in this section are only used when a test requiring Arlequin, such
as it’s implementation of Guo and Thompson’s (1992) Hardy-Weinberg exact test is invoked (see below).

• arlequinExec

This option specifies where to find the Arlequin executable on your system. The default assumes it is on your
system path. [Default: arlecore.exe]

[HardyWeinbergGuoThompsonArlequin] extra section

When this section is present, Arlequin’s implementation of the Hardy-Weinberg exact test is run, using a Monte-Carlo
Markov Chain implementation. By default this section is not enabled.

• markovChainStepsHW

Length of steps in the Markov chain [Default: 2500000].

• markovChainDememorisationStepsHW

Number of steps of to “burn-in” the Markov chain before statistics are collected.[Default: 5000]

The default values for options described above have proved to be optimal for us and if the options are not provided
these defaults will be used. If you change the values and have problems, please let us know.

Advanced filtering sections
This section describes additional advanced sections that can be used for applying filtering to both the input and output of the
population data.

[Filters] extra section

When this section is present, it allows you to specify successive filters to the data.

• filtersToApply

Here you specify which filters you want applied to the data and the order in which you want them applied. The format is
`FILTER[:FILTER]*, i.e. a series of colon-delimited filters. Currently there are four predefined filter: AnthonyNolan,
Sequence, DigitBinning, and CustomBinning. If you specify one or more of these filters, you will get the default
behavior of the filter. If you wish to modify the default behavior, you should add a section with the same name as the
specified filter(s). See next section for more on this. Please note that, while you are allowed to specify any ordering for
the filters, some orderings may not make sense. For example, the ordering Sequence:AnthonyNolan would not make

2.5. The configuration file 19

PyPop User Guide, Release 1.4.0

sense (because as far as PyPop is concerned, your alleles are now amino acid residues.) However, the reverse ordering,
AnthonyNolan:Sequence, would be logical and perhaps even advisable.

• makeNewPopFile

This option creates intermediate population files (in the .pop format) before or after any filtering step. This allows the
user to save and inspect the output, and for running the output through another PyPop process with potentially different
parameters. The format of the argument is: {all-loci|separate-loci}:<NUMBER>. Where separate-loci gen-
erates separate .pop files for each of the loci, and all-loci generates a single .pop file with all loci. <NUMBER> is an
integer representing the step in the filtering process at which the output files should be generated. So 0 represents the
original input data, i.e. the step before the filtering runs, whereas 1 would be the data after the first filter is run, and so
on.

For example, with the following stanza in an .ini file

[Filters]
filtersToApply=Sequence
makeNewPopFile=all-loci:1

[Sequence]
directory=tests/data/anthonynolan/msf-2.18.0/

applied to an input file MyPopulation.pop with a single HLA locus A :

A_1 A_2
0101 0201
0210 03012
0101 0218

This would apply the Sequence filter options , generating a new file MyPopulation-filtered.popwhere the original
HLA A locus is translated into columns where each new locus would consist of the individual polymorphic amino acid
residue position within HLA A, and then generate output files for that data at that point. For example, the first two
columns showing the first two polymorphic positions at residues 9 (new locus A_9) and 44 (new locus A_42), the
NewPopulation-filtered.pop might look something like this:

A_9_1 A_9_2 A_44_1 A_44_2 ...
F F K R ...
Y F R R ...
F F K R ...

[AnthonyNolan] filter section

This section is only useful for HLA data. Like all filter sections, it will only be used if present in the filtersToApply line
specified above. If so enabled, your data will be filtered through the Anthony Nolan database of known HLA allele names
before processing. The data files this filter relies on are not currently distributed with PyPop within the binary installable
packages (“wheels”), but can be obtained as described in the directory section, below, or the IMGT ftp site4.

í Warning

The current implementation of the AnthonyNolan filter only works with data in old-style (pre-2010) HLA nomenclature.
However, the Sequence filter has been ported to use new nomenclature, but only by specifying a recent version of the
Multiple Sequence Format (MSF5)) files in the remoteMSF option

Invocation of this filter will produce a <POPFILE>-filter.xml file output showing what was resolved and what could not
be resolved.

• alleleFileFormat

2.5. The configuration file 20

ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/
https://tcoffee.org/Documentation/misc/Format%20Documentation.htm

PyPop User Guide, Release 1.4.0

This options specifies which of the formats the Anthony Nolan allele data will be used. The option can be set to either
txt (for the plain free text format) or msf (for the Multiple Sequence Format6) [Default: msf]

• directory or remoteMSF

This section expects there to exist either directory option (which points to a local disk directory) or the remoteMSF
option (which downloads MSF files on-the-fly) (but not both). There are no defaults.

To save space, sequence files are not distributed as part of the wheels, but are either downloaded on-the-fly, or (in the
case of the versions using old sequence nomenclature) are distributed as part of the source distribution. They are then
incorporated into the unit tests.

– directory: Specifies the path to the root of the sequence files. It can be either relative or absolute. If it is relative,
the path will be resolved relative to the current working directory.

A version (2.18.0) of the sequence files that use old (pre-2010) nomenclature can be found in the GitHub repo here
(you can either clone the repo or download the files manually):

∗ txt: files: tests/data/anthonynolan/HIG-seq-pep-text/7

∗ msf files: tests/data/anthonynolan/msf-2.18.0/8

– remoteMSF: Specifies the version (tag) of the remote msf directory in the IMGT-HLA GitHub repo9. If present,
the remote MSF files for the specified version will be downloaded on-demand, and cached for later reuse. For
example:

[Sequence]
remoteMSF=3.59.0-alpha

would download the msf directory with v3.59.0-alpha tag, i.e.: https://github.com/ANHIG/IMGTHLA/tree/
v3.59.0-alpha/msf, which at the time of writing, was the most recent release.

Note that this option is only available for MSF files, there is no equivalent for other file types.

• preserve-ambiguous

The default behavior of the AnthonyNolan filter is to ignore allele ambiguity (“slash”) notation. This notation, common
in the literature, looks like: 010101/0102/010301. The default behavior will simply truncate this to 0101. If you want
to preserve the notation, set the option to 1. This will result in a filtered allele “name” of 0101/0102/0103 in the above
hypothetical example. [Default: 0].

• preserve-unknown

The default behavior of the AnthonyNolan filter is to replace unknown alleles with the untypedAllele designator. If
you want the filter to keep allele names it does not recognize, set the option to 1. [Default: 0].

• preserve-lowres

This option is similar to preserve-unknown, but only applies to lowres alleles. If set to 1, PyPop will keep allele
names that are shorter than the default allele name length, usually 4 digits long. But if the preserve-unknown flag is set,
this one has no effect, because all unknown alleles are preserved. [Default: 0].

[Sequence] filter section

This section allows configuration of the sequence filter. Like all filter sections, it will only will be used if present in the
filtersToApply line specified above. If so enabled, your allele names will be translated into sequences, and all ensuing
analyses will consider each position in the sequence to be a distinct locus. This filter makes use of the same msf format
alignment files as used above in the AnthonyNolan filter. It does not work with the txt format alignment files.

• sequenceFileSuffix

Determines the files that will be examined in order to read in a sequence for each allele. (ie, if the file for locus A is
A_prot.msf, the value would be _prot whereas if you wanted to use the nucleotide sequence files, you might use
_nuc.) [Default: _prot].

2.5. The configuration file 21

https://www.ebi.ac.uk/ipd/imgt/hla/download/
https://github.com/alexlancaster/pypop/tree/main/tests/data/anthonynolan/HIG-seq-pep-text
https://github.com/alexlancaster/pypop/tree/main/tests/data/anthonynolan/msf-2.18.0
https://github.com/ANHIG/IMGTHLA/
https://github.com/ANHIG/IMGTHLA/tree/v3.59.0-alpha/msf
https://github.com/ANHIG/IMGTHLA/tree/v3.59.0-alpha/msf

PyPop User Guide, Release 1.4.0

• directory or remoteMSF

Specifies the either path to the root of the sequence files (directory), or the remote MSF version (remoteMSF) in the
same manner as in the AnthonyNolan section, above.

[DigitBinning] filter section

This section allows configuration of the DigitBinning filter. Like all filter sections, it will be used if present in the
filtersToApply line specified above. If so enabled, your allele names will be truncated after the nth digit.

• binningDigits

An integer that specifies how many digits to keep after the truncation. [Default: 4].

[CustomBinning] filter section

This section allows configuration of the CustomBinning filter. Like all filter sections, it will only be used if present in the
filtersToApply line specified above.

You can provide a set of custom rules for replacing allele names. Allele names should be separated by / marks. This filter
matches any allele names that are exactly the same as the ones you list here, and will also find “close matches” (but only if
there are no exact matches.). Here is an example:

A=01/02/03
04/05/03:06
!06/12:01/13:01
!07/08:05

In the example above, A*03 alleles will match to 01/02/03, except for A*03:06, which will match to 04/05/03:06. In the
output file, A*03:06 will be replaced with 04/05/03:06 and other A*03 alleles will be replaced with 01/02/03. If you place
a ! mark in front of the first allele name, that first name will be used as the “new name” for the binned group (for example,
A*08:05 will be called 07 in the custom-binned data.) Note that the space at the beginning of the lines (following the first line
of each locus) is important. The above rules are just dummy examples, provided to illustrate how the filter works. PyPop is
distributed with a biologically relevant set of CustomBinning rules that have been compiled from several (Cano et al., 2007,
Mack et al., 2007) sources 10

2.6 PyPop API examples
Here is a short example of how you can use the API (documented in the PyPop API Reference) directly in your own Python
program. This program reads a short .pop data file consisting of one locus with seven individuals, and rather than reading
from a configuration file, it creates a configuration object with the file format details and enables a single [HardyWeinberg]
analysis. It then performs the equivalent of the popmeta script and generates output TSV files.

The Main class generates analysis results as XML, and then Meta processes this XML to generate .tsv file output suitable
for further analysis. Here is the process, step-by-step:

• First create the ConfigParser11instance from a dictionary (note that untypedAllele and alleleDesignators are
specified explicitly, even though they are the same as defaults, they must always match the input file):

(You can cut and paste the following code snippets directly into an interactive Python session).

from configparser import ConfigParser
config = ConfigParser()
config.read_dict({"ParseGenotypeFile": {"untypedAllele": "****",

"alleleDesignator": "*",
"validSampleFields": "*a_1\n*a_2"},

"HardyWeinberg": {"lumpBelow": "5"}})

• Next, create a test .pop text file (note the tab-spaces inline). (You could replace this with your own input file, or generate
pop_contents from an existing data structure in your program):

2.6. PyPop API examples 22

https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

PyPop User Guide, Release 1.4.0

pop_contents = '''a_1\ta_2
****\t****
01:01\t02:01
02:10\t03:01:02
01:01\t02:18
25:01\t02:01
02:10\t32:04
03:01:02\t32:04'''
with open("my.pop", "w") as f:

f.write(pop_contents)

• Now create the Main instance, using the config object to run the analysis of data in my.pop:

from PyPop.popanalysis import Main
application = Main(config=config, fileName="my.pop", version="fake")

The analysis runs to completion and produces the following default logging output to the console:

LOG: no XSL file, skipping text output
LOG: Data file has no header data block

• You can query the Main instance to get the name of the generated output XML file: my-out.xml

>>> application.getXmlOutPath()
'my-out.xml'

• Lastly, pass this file to the Meta class to generate output TSV files (as described in Aggregating results from multiple
runs (popmeta)):

outXML = application.getXmlOutPath()
from PyPop.popaggregate import Meta
Meta (TSV_output=True, xml_files=[outXML])

The generated TSV files are listed in the console output:

./1-locus-hardyweinberg.tsv

./1-locus-summary.tsv

./1-locus-allele.tsv

./1-locus-genotype.tsv

• These listed .tsv files can then be read into another data structure (e.g. a pandas dataframe12) for further analysis.

2.7 Command-line interfaces
Described below is the usage for both pypop and popmeta, including a full list of the current command-line options and
arguments for PyPop version 1.4.0. Note that you can also view this full list of options from the program itself by supplying
the --help option, i.e. pypop --help, or popmeta --help, respectively.

pypop usage

Process and run population genetics statistics on one or more POPFILE s. Expects to find a configuration file called config.
ini in the current directory

usage: pypop [-h]
[--citation [{apalike,bibtex,endnote,ris,codemeta,cff,schema.org,zenodo}]]
[-o OUTPUTDIR] [-V] [-d]
[--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
[--log-file LOGFILE] [-c CONFIG] [-m] [-x XSLFILE] [-t]

(continues on next page)

2.7. Command-line interfaces 23

https://pandas.pydata.org

PyPop User Guide, Release 1.4.0

(continued from previous page)
[--enable-ihwg] [--enable-phylip] [-p PREFIX_TSV] [-i]
[-f FILELIST]
[POPFILE ...]

Options for pypop

--citation Possible choices: apalike, bibtex, endnote, ris, codemeta, cff, schema.org, zenodo

generate citation to PyPop for this version of PyPop

Default: 'apalike'

-o, --outputdir put output in directory OUTPUTDIR

-V, --version show program’s version number and exit

-d, --debug enable debugging output (sets log level to DEBUG and overrides config file setting)

--log-level Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL

set log level (overrides -d); one of: DEBUG, INFO, WARNING, ERROR, CRITICAL

Added in version 1.4.0

Added in version 1.4.0.

--log-file write logs to LOGFILE instead of stdout

Added in version 1.4.0

Added in version 1.4.0.

-c, --config select config file

Default: 'config.ini'

-m, --testmode run PyPop in test mode for unit testing

-x, --xsl override the default XSLT translation with XSLFILE

TSV output options

Note that --enable-* and --prefix-tsv options are only valid if --enable-tsv/-t is also supplied

-t, --enable-tsv generate TSV output files (aka run popmeta)

--enable-ihwg enable 13th IWHG workshop populationdata default headers

--enable-phylip enable generation of PHYLIP .phy files

-p, --prefix-tsv append PREFIX_TSV to the output TSV files

Mutually exclusive input options

-i, --interactive run in interactive mode, prompting user for file names

-f, --filelist file containing list of files (one per line) to process. files are resolved relative to
FILELIST, unless absolute. mutually exclusive with supplying POPFILE)

POPFILE input population (.pop) file(s)

Default: []

2.7. Command-line interfaces 24

PyPop User Guide, Release 1.4.0

popmeta usage

Processes XMLFILEs and generates ‘meta’-analyses. XMLFILE are expected to be the XML output files taken from runs of
pypop. Will skip any XML files that are not well-formed XML.

usage: popmeta [-h]
[--citation [{apalike,bibtex,endnote,ris,codemeta,cff,schema.org,zenodo}]]
[-o OUTPUTDIR] [-V] [-d]
[--log-level {DEBUG,INFO,WARNING,ERROR,CRITICAL}]
[--log-file LOGFILE] [-p PREFIX_TSV] [--disable-tsv]
[--output-meta] [-x XSLDIR] [--enable-ihwg]
[--enable-phylip | -b FACTOR]
XMLFILE [XMLFILE ...]

Positional Arguments

XMLFILE XML (.xml) file(s) generated by pypop runs

Default: []

Options for popmeta

--citation Possible choices: apalike, bibtex, endnote, ris, codemeta, cff, schema.org, zenodo

generate citation to PyPop for this version of PyPop

Default: 'apalike'

-o, --outputdir put output in directory OUTPUTDIR

-V, --version show program’s version number and exit

-d, --debug enable debugging output (sets log level to DEBUG and overrides config file setting)

--log-level Possible choices: DEBUG, INFO, WARNING, ERROR, CRITICAL

set log level (overrides -d); one of: DEBUG, INFO, WARNING, ERROR, CRITICAL

Added in version 1.4.0

Added in version 1.4.0.

--log-file write logs to LOGFILE instead of stdout

Added in version 1.4.0

Added in version 1.4.0.

-p, --prefix-tsv append PREFIX_TSV to the output TSV files

--disable-tsv disable generation of .tsv TSV files

--output-meta dump the meta output file to stdout, ignore xslt file

-x, --xsldir use specified directory to find meta XSLT

--enable-ihwg enable 13th IWHG workshop populationdata default headers

2.7. Command-line interfaces 25

PyPop User Guide, Release 1.4.0

Mutually exclusive popmeta options

--enable-phylip enable generation of PHYLIP .phy files

-b, --batchsize process in batches of size total/FACTOR rather than all at once, by default do separately
(batchsize=0)

Default: 0

Notes
1. https://github.com/alexlancaster/pypop/blob/main/tests/data/minimal.ini

2. https://github.com/alexlancaster/pypop/blob/main/tests/data/USAFEL-UchiTelle-small.pop

3. These hardcoded numbers can be changed if you obtain the source code yourself and change the appropriate #define emhaplofreq.h and recompile the program.

4. ftp://ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/

5. https://tcoffee.org/Documentation/misc/Format%20Documentation.htm

6. https://www.ebi.ac.uk/ipd/imgt/hla/download/

7. https://github.com/alexlancaster/pypop/tree/main/tests/data/anthonynolan/HIG-seq-pep-text

8. https://github.com/alexlancaster/pypop/tree/main/tests/data/anthonynolan/msf-2.18.0

9. https://github.com/ANHIG/IMGTHLA/

10. The Anthony Nolan list of deleted allele names (https://github.com/ANHIG/IMGTHLA/blob/Latest/Deleted\protect_alleles.txt); and the Ambiguous Allele Combinations,
release 2.18.0 (https://www.ebi.ac.uk/ipd/imgt/hla/ambiguity).

11. https://docs.python.org/3/library/configparser.html#configparser.ConfigParser

12. https://pandas.pydata.org

2.7. Command-line interfaces 26

https://github.com/ANHIG/IMGTHLA/blob/Latest/Deleted\protect _alleles.txt
https://www.ebi.ac.uk/ipd/imgt/hla/ambiguity

CHAPTER

THREE

INTERPRETING PYPOP OUTPUT

As mentioned in What happens when you run PyPop?, The XML file is the primary output created by PyPop and contains the
complete set of results. The text output, generated from the XML file via XSLT, contains a human-readable summary of the
XML results. Below we discuss the output contained in this text file.

í Warning

The text output we discuss below is strictly intended for consumption by an end-user, or incorporation into a paper. You
should never extract information from this text file output to perform any downstream analyses (e.g. don’t take the values
in the output and paste them into another program). This is because the results are rounded for space, and you may lose a
lot of precision if you use any floating-point output in further analyses.

You should use the TSV outputs for maximum precision (which, in turn, are derived from the raw XML output) for such
analyses.

3.1 Population summary
A Population Summary is generated for each dataset analyzed. This summary provides basic demographic information and
summarizes information about the sample size.

Sample output:

Population Summary
==================
Population Name: UchiTelle

Lab code: USAFEL
Typing method: 12th Workshop SSOP

Ethnicity: Telle
Continent: NW Asia

Collection site: Targen Village
Latitude: 41 deg 12 min N
Longitude: 94 deg 7 min E

Population Totals

Sample Size (n): 47
Allele Count (2n): 94
Total Loci in file: 9
Total Loci with data: 8

27

PyPop User Guide, Release 1.4.0

3.2 Single locus analyses

Basic allele count information
Information relevant to individual loci is reported. Sample size and allele counts will differ among loci if not all individuals
were typed at each locus. Untyped individuals are those for which one or two alleles were not reported. The alleles are listed
in descending frequency (and count) in the left hand column, and are sorted numerically in the right column. The number of
distinct alleles k is reported.

I. Single Locus Analyses
========================

1. Locus: A

1.1. Allele Counts [A]

Untyped individuals: 2
Sample Size (n): 45
Allele Count (2n): 90
Distinct alleles (k): 10

Counts ordered by frequency | Counts ordered by name
Name Frequency (Count) | Name Frequency (Count)
02:01 0.21111 19 | 01:01 0.13333 12
03:01 0.15556 14 | 02:01 0.21111 19
01:01 0.13333 12 | 02:10 0.10000 9
25:01 0.12222 11 | 02:18 0.10000 9
02:10 0.10000 9 | 03:01 0.15556 14
02:18 0.10000 9 | 25:01 0.12222 11
32:04 0.08889 8 | 32:04 0.08889 8
69:01 0.04444 4 | 68:14 0.03333 3
68:14 0.03333 3 | 69:01 0.04444 4
74:03 0.01111 1 | 74:03 0.01111 1
Total 1.00000 90 | Total 1.00000 90

In the cases where there is no information for a locus, a message is displayed indicating lack of data.

Sample output:

4. Locus: DRA

No data for this locus!

Chi-square test for deviation from Hardy-Weinberg proportions (HWP).
For each locus, the observed genotype counts are compared to those expected under Hardy Weinberg proportions (HWP). A
triangular matrix reports observed and expected genotype counts. If the matrix is more than 80 characters, the output is split
into different sections. Each cell contains the observed and expected number for a given genotype in the format observed/
expected.

6.2. HardyWeinberg [DQA1]

Table of genotypes, format of each cell is: observed/expected.

02:01 8/5.1
03:01 4/4.0 1/0.8
04:01 3/6.9 1/2.7 6/2.3
05:01 8/9.9 5/3.8 5/6.7 6/4.8

02:01 03:01 04:01 05:01
[Cols: 1 to 4]

The values in this matrix are used to test hypotheses of deviation from HWP. The output also includes the chi-square statistic,
the number of degrees of freedom and associated 𝑝-value for a number of classes of genotypes and is summarized in the

3.2. Single locus analyses 28

PyPop User Guide, Release 1.4.0

following table:

Observed Expected Chi-square DoF p-value
--

Common N/A N/A 4.65 1 0.0310*
--
Lumped genotypes N/A N/A 1.17 1 0.2797

--
Common + lumped N/A N/A 5.82 1 0.0158*

--
All homozygotes 21 13.01 4.91 1 0.0268*

--
All heterozygotes 26 33.99 1.88 1 0.1706
--
Common heterozygotes by allele

02:01 15 20.78 1.61 0.2050
03:01 10 10.47 0.02 0.8850
04:01 9 16.31 3.28 0.0703
05:01 18 20.43 0.29 0.5915

--
Common genotypes

02:01+02:01 8 5.11 1.63 0.2014
02:01+04:01 3 6.93 2.23 0.1358
02:01+05:01 8 9.89 0.36 0.5472
04:01+05:01 5 6.70 0.43 0.5109

Total 24 28.63
--

• Common.

The result for goodness of fit to HWP using only the genotypes with at least lumpBelow expected counts (the common
genotypes) (in the output shown throughout this example lumpBelow is equal to 5).

If the dataset contains no genotypes with expected counts equal or greater than lumpBelow, then there are no common
genotypes and the following message is reported:

No common genotypes; chi-square cannot be calculated

The analysis of common genotypes may lead to a situation where there are fewer classes (genotypes) than allele fre-
quencies to estimate. This means that the analysis cannot be performed (degrees of freedom < 1). In such a case the
following message is reported, explaining why the analysis could not be performed:

Too many parameters for chi-square test.

To obviate this as much as possible, only alleles which occur in common genotypes are used in the calculation of degrees
of freedom.

• Lumped genotypes.

The result for goodness of fit to HWP for the pooled set of genotypes that individually have less than lumpBelow
expected counts.

The pooling procedure is designed to avoid carrying out the chi-square goodness of fit test in cases where there are low
expected counts, which could lead to spurious rejection of HWP. However, in certain cases it may not be possible to
carry out this pooling approach. The interpretation of results based on lumped genotypes will depend on the particular
genotypes that are combined in this class.

If the sum of expected counts in the lumped class does not add up to lumpBelow, then the test for the lumped genotypes
cannot be calculated and the following message is reported:

The total number of expected genotypes is less than 5

This may by remedied by combining rare alleles and recalculating overall chi-square value and degrees of freedom.
(This would require appropriate manipulation of the data set by hand and is not a feature of PyPop).

3.2. Single locus analyses 29

PyPop User Guide, Release 1.4.0

• Common + lumped.

The result for goodness of fit to HWP for both the common and the lumped genotypes.

• All homozygotes.

The result for goodness of fit to HWP for the pooled set of homozygous genotypes.

• All heterozygotes.

The result for goodness of fit to HWP for the pooled set of heterozygous genotypes.

• Common heterozygotes.

The common heterozygotes by allele section summarizes the observed and expected number of counts of all heterozy-
gotes carrying a specific allele with expected value GE lumpBelow.

• Common genotypes.

The common genotypes by genotype section lists observed, expected, chi-square and 𝑝-values for all observed genotypes
with expected values GE lumpBelow.

Exact test for deviation from HWP
If enabled in the configuration file, the exact test for deviations from HWP will be output. The exact test uses the method of
Guo and Thompson (1992). The 𝑝-value provided describes how probable the observed set of genotypes is, with respect to a
large sample of other genotypic configurations (conditioned on the same allele frequencies and 2𝑛). 𝑝-values lower than 0.05
can be interpreted as evidence that the sample does not fit HWP. In addition, those individual genotypes deviating significantly
(𝑝 < 0.05) from expected HWP as computed with the Chen and “diff” measures are reported.

There are two implementations for this test, the first using the gthwe implementation originally due to Guo & Thompson, but
modified by John Chen, the second being Arlequin’s (Excoffier and Lischer, 2010, Schneider et al., 2000) implementation.

6.3. Guo and Thompson HardyWeinberg output [DQA1]

Total steps in MCMC: 1000000
Dememorization steps: 2000
Number of Markov chain samples: 1000
Markov chain sample size: 1000
Std. error: 0.0009431
p-value (overall): 0.0537

6.4. Guo and Thompson HardyWeinberg output(Arlequin's implementation) [DQA1]

Observed heterozygosity: 0.553190
Expected heterozygosity: 0.763900
Std. deviation: 0.000630
Dememorization steps: 100172
p-value: 0.0518

Note that in the Arlequin implementation, the output is slightly different, and the only directly comparable value between the
two implementation is the 𝑝-value. These 𝑝-values may be slightly different, but should agree to within one significant figure.

The Ewens-Watterson homozygosity test of neutrality
For each locus, we implement the Ewens-Watterson homozygosity test of neutrality (Ewens, 1972, Watterson, 1978). We use
the term observed homozygosity to denote the homozygosity statistic (𝐹), computed as the sum of the squared allele frequen-
cies. This value is compared to the expected homozygosity which is computed by simulation under neutrality/equilibrium
expectations, for the same sample size (2𝑛) and number of unique alleles (𝑘). Note that the homozygosity F statistic,
𝐹 =

∑︀𝑘
𝑖=1 𝑝

2
𝑖 , is often referred to as the expected homozygosity (with expectation referring to HWP) to distinguish it from the

observed proportion of homozygotes. We avoid referring to the observed 𝐹 statistic as the “observed expected homozygos-
ity” (to simplify and hopefully avoid confusion) since the homozygosity test of neutrality is concerned with comparisons of

3.2. Single locus analyses 30

PyPop User Guide, Release 1.4.0

observed results to expectations under neutrality. Both the observed statistic (based on the actual data) and expected statistic
(based on simulations under neutrality) used in this test are computed as the sum of the squared allele frequencies.

The normalized deviate of the homozygosity (𝐹𝑛𝑑) is the difference between the observed homozygosity and expected homozy-
gosity, divided by the square root of the variance of the expected homozygosity (also obtained by simulations; (Salamon et
al., 1999)). Significant negative normalized deviates imply observed homozygosity values lower than expected homozygosity,
in the direction of balancing selection. Significant positive values are in the direction of directional selection.

The 𝑝-value in the last row of the output is the probability of obtaining a homozygosity𝐹 statistic under neutral evolution that is
less than or equal to the observed 𝐹 statistic. It is computed based on the null distribution of homozygosity 𝐹 values simulated
under neutrality/equilibrium conditions for the same sample size (2𝑛) and number of unique alleles (𝑘). For a one-tailed test of
the null hypothesis of neutrality against the alternative of balancing selection, 𝑝-values less than 0.05 are considered significant
at the 0.05 level. For a two-tailed test against the alternative of either balancing or directional selection, 𝑝-values less than
0.025 or greater than 0.975 can be considered significant at the 0.05 level.

The standard implementation of the test uses a Monte-Carlo implementation of the exact test written by Slatkin (1994, 1996).
A Markov-chain Monte Carlo method is used to obtain the null distribution of the homozygosity statistic under neutrality. The
reported 𝑝-values are one-tailed (against the alternative of balancing selection), but can be interpreted for a two-tailed test by
considering either extreme of the distribution (< 0.025 or > 0.975) at the 0.05 level.

1.6. Slatkin's implementation of EW homozygosity test of neutrality [A]

Observed F: 0.1326, Expected F: 0.2654, Variance in F: 0.0083
Normalized deviate of F (Fnd): -1.4603, p-value of F: 0.0029**

í Warning

The version of this test based on tables of simulated percentiles of the Ewens-Watterson statistics is now disabled by
default and its use is deprecated in preference to the Slatkin exact test described above, however some older PyPop runs
may include output, so it is documented here for completeness. This version differs from the Monte-Carlo Markov Chain
version described above in that the data is simulated under neutrality to obtain the required statistics.
1.4. Ewens-Watterson homozygosity test of neutrality [A]
--
Observed F: 0.1326, Expected F: 0.2651, Normalized deviate (Fnd): -1.4506
p-value range: 0.0000 < p <= 0.0100 *

3.3 Multi-locus analyses
Haplotype frequencies are estimated using the iterative Expectation-Maximization (EM) algorithm (Dempster et al., 1977,
Excoffier and Slatkin, 1995). Multiple starting conditions are used to minimize the possibility of local maxima being reached
by the EM iterations. The haplotype frequencies reported are those that correspond to the highest logarithm of the sample
likelihood found over the different starting conditions and are labeled as the maximum likelihood estimates (MLE).

The output provides the names of loci for which haplotype frequencies were estimated, the number of individual genotypes
in the dataset (before-filtering), the number of genotypes that have data for all loci for which haplotype estimation will
be performed (after-filtering), the number of unique phenotypes (unphased genotypes), the number of unique phased
genotypes, the total number of possible haplotypes that are compatible with the genotypic data (many of these will have an
estimated frequency of zero), and the log-likelihood of the observed genotypes under the assumption of linkage equilibrium.

All pairwise LD
A series of linkage disequilibrium (LD) measures are provided for each pair of loci, as shown in the sample output below.

II. Multi-locus Analyses
========================

(continues on next page)

3.3. Multi-locus analyses 31

PyPop User Guide, Release 1.4.0

(continued from previous page)

Haplotype/ linkage disequlibrium (LD) statistics
__

Pairwise LD estimates

Locus pair D D' Wn ln(L_1) ln(L_0) S ALD_1_2 ALD_2_1
A:C 0.01465 0.49229 0.39472 -289.09 -326.81 75.44 0.41435 0.37525
A:B 0.01491 0.50895 0.40145 -293.47 -330.84 74.73 0.40726 0.39512
A:DRB1 0.01299 0.42896 0.38416 -282.00 -309.16 54.32 0.32934 0.38370
A:DQA1 0.01219 0.33413 0.36466 -269.57 -286.08 33.02 0.25803 0.34897
A:DQB1 0.01356 0.39266 0.37495 -275.58 -297.62 44.07 0.29931 0.37489
A:DPA1 0.01681 0.32397 0.36666 -219.78 -226.97 14.38 0.19446 0.35360
A:DPB1 0.01362 0.42240 0.40404 -237.85 -262.06 48.42 0.33848 0.41739
C:B 0.04125 0.88739 0.85752 -210.37 -342.68 264.63 0.84781 0.86104
C:DRB1 0.01698 0.48046 0.47513 -280.34 -317.66 74.62 0.32308 0.47691
C:DQA1 0.02072 0.47797 0.49368 -263.23 -293.74 61.01 0.31386 0.50338
C:DQB1 0.01766 0.45793 0.49879 -269.55 -305.28 71.46 0.30479 0.50122
C:DPA1 0.02039 0.41030 0.46438 -224.72 -236.52 23.61 0.21172 0.46433
C:DPB1 0.01898 0.46453 0.37002 -242.45 -268.46 52.01 0.33462 0.45327
B:DRB1 0.01723 0.50254 0.41712 -286.79 -320.50 67.42 0.32654 0.43913
B:DQA1 0.01845 0.44225 0.43582 -271.36 -296.59 50.45 0.28877 0.44993
B:DQB1 0.01958 0.49040 0.43654 -277.30 -308.13 61.65 0.31328 0.45679
B:DPA1 0.01875 0.37441 0.40117 -229.76 -239.16 18.80 0.20689 0.40443
B:DPB1 0.01898 0.46082 0.38001 -247.84 -272.77 49.86 0.32227 0.45680
DRB1:DQA1 0.06138 0.92556 0.92465 -164.06 -271.56 214.99 0.82051 0.93006
DRB1:DQB1 0.06058 1.00000 1.00000 -147.74 -283.10 270.72 0.93302 1.00000

...

For each locus pair, we report three measures of overall linkage disequilibrium. 𝐷′ (Hedrick, 1987) weights the contribution
to LD of specific allele pairs by the product of their allele frequencies (D' in the output); 𝑊𝑛 (Cramér, 1946) is a re-expression
of the chi-square statistic for deviations between observed and expected haplotype frequencies (W_n in the output)). 𝑊𝐴/𝐵 and
𝑊𝐵/𝐴 (ALD_1_2 and ALD_2_1, respectively in the output) are extensions of 𝑊𝑛 that account for asymmetry when the number
of alleles differs at two loci (Thomson and Single, 2014). Below we describe the measures, each of which is normalized to lie
between zero and one.

𝐷′

Overall LD, summing contributions (𝐷′
𝑖𝑗 = 𝐷𝑖𝑗/𝐷𝑚𝑎𝑥) of all the haplotypes in a multi-allelic two-locus system, can

be measured using Hedrick’s 𝐷′ statistic, using the products of allele frequencies at the loci, 𝑝𝑖 and 𝑞𝑗 , as weights.

𝐷′ =
𝐼∑︁

𝑖=1

𝐽∑︁
𝑗=1

𝑝𝑖𝑞𝑗
⃒⃒
𝐷′

𝑖𝑗

⃒⃒
𝑊𝑛

Also known as Cramer’s V Statistic (Cramér, 1946), 𝑊𝑛, is a second overall measure of LD between two loci. It is a
re-expression of the Chi-square statistic, 𝑋2

𝐿𝐷, normalized to be between zero and one. When there are only two alleles
per locus, 𝑊𝑛 is equivalent to the correlation coefficient between the two loci, defined as:

𝑊𝑛 =

[︃∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝐷

2
𝑖𝑗/𝑝𝑖𝑞𝑗

min(𝐼 − 1, 𝐽 − 1)

]︃ 1
2

=

[︂
𝑋2

𝐿𝐷/2𝑁

min(𝐼 − 1, 𝐽 − 1)

]︂ 1
2

two alleles case
When there are only two alleles per locus, 𝑊𝑛 is equivalent to the correlation coefficient between the two loci, defined
as 𝑟 =

√︀
𝐷11/𝑝1𝑝2𝑞1𝑞2.

𝑊𝐴/𝐵 and 𝑊𝐵/𝐴

When there are different numbers of alleles at the two loci, the direct correlation property for the 𝑟 correlation measure is
not retained by𝑊𝑛, its multi-allelic extension. The complementary pair of conditional asymmetric LD (ALD) measures,
𝑊𝐴/𝐵 and 𝑊𝐵/𝐴, were developed to extend the 𝑊𝑛 measure. 𝑊𝐴/𝐵 is (inversely) related to the degree of variation of
A locus alleles on haplotypes conditioned on B locus alleles. If there is no variation of A locus alleles on haplotypes

3.3. Multi-locus analyses 32

PyPop User Guide, Release 1.4.0

conditioned on B locus alleles, then 𝑊𝐴/𝐵 = 1 𝑊𝐴/𝐵 = 𝑊𝐵/𝐴 = 𝑊𝑛 when there is symmetry in the data and thus
for bi-allelic SNPs.

𝑊𝐴/𝐵 =

[︃∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝐷

2
𝑖𝑗/𝑞𝑗

1− 𝐹𝐴

]︃ 1
2

𝑊𝐵/𝐴 =

[︃∑︀𝐼
𝑖=1

∑︀𝐽
𝑗=1 𝐷

2
𝑖𝑗/𝑝𝑖

1− 𝐹𝐵

]︃ 1
2

In addition to the LD measures described above, for each locus pair, we describe three additional measures related to the
log-likelihood that are displayed in the output above:

ln(𝐿1)
the log-likelihood of obtaining the observed data given the inferred haplotype frequencies (ln(L_1) in the output)

ln(𝐿0)
the log-likelihood of the data under the null hypothesis of linkage equilibrium (ln(L_0) in the output)

𝑆
the statistic (S in the output) is defined as twice the difference between these likelihoods. 𝑆 has an asymptotic chi-square
distribution, but the null distribution of 𝑆 is better approximated using a randomization procedure. If a permutation
test is requested (by setting the option allPairwiseLDWithPermu to a a number greater than zero in the .ini file),
the empirical distribution of 𝑆 is generated by shuffling genotypes among individuals, separately for each locus, thus
creating linkage equilibrium. The additional column # permu that will be generated (not shown in the example output
above) will indicate how many permutations were carried out. The 𝑝-value (also not shown) will be the fraction of
permutations that results in values of 𝑆 greater or equal to that observed. A 𝑝 < 0.05 is indicative of overall significant
LD.

Individual LD coefficients, 𝐷𝑖𝑗 , are stored in the XML output file, but are not printed in the default text output. They can be
accessed in the summary text files created by the popmeta script (see What happens when you run PyPop?).

Haplotype frequency estimation
Haplotype frequency est. for loci: A:B:DRB1

Number of individuals: 47 (before-filtering)
Number of individuals: 45 (after-filtering)
Unique phenotypes: 45
Unique genotypes: 113
Number of haplotypes: 188
Loglikelihood under linkage equilibrium [ln(L_0)]: -472.700542
Loglikelihood obtained via the EM algorithm [ln(L_1)]: -340.676530
Number of iterations before convergence: 67

The estimated haplotype frequencies are sorted alphanumerically by haplotype name (left side), or in decreasing frequency
(right side). Only haplotypes estimated at a frequency of 0.00001 or larger are reported. The first column gives the allele names
in each of the three loci, the second column provides the maximum likelihood estimate for their frequencies, (frequency),
and the third column gives the corresponding approximate number of haplotypes (# copies).

Haplotypes sorted by name | Haplotypes sorted by frequency
haplotype frequency # copies | haplotype frequency # copies
01:01~13:01~04:02 0.02222 2.0 | 02:01~14:01~04:02 0.03335 3.0
01:01~13:01~11:01 0.01111 1.0 | 32:04~14:01~08:02 0.03333 3.0
01:01~14:01~09:01 0.01111 1.0 | 03:01~14:01~04:07 0.03333 3.0
01:01~15:20~08:02 0.01111 1.0 | 03:01~13:01~04:02 0.03333 3.0
01:01~18:01~04:07 0.01111 1.0 | 02:01~14:01~11:01 0.03332 3.0
01:01~39:02~04:04 0.01111 1.0 | 03:01~15:20~08:02 0.02222 2.0
01:01~39:02~16:02 0.01111 1.0 | 01:01~40:05~08:02 0.02222 2.0
01:01~40:05~08:02 0.02222 2.0 | 03:01~39:02~04:02 0.02222 2.0
01:01~81:01~08:02 0.01111 1.0 | 02:01~13:01~16:02 0.02222 2.0

(continues on next page)

3.3. Multi-locus analyses 33

PyPop User Guide, Release 1.4.0

(continued from previous page)
01:01~81:01~16:02 0.01111 1.0 | 02:18~14:01~04:04 0.02222 2.0
02:01~13:01~16:02 0.02222 2.0 | 02:10~51:01~16:02 0.02222 2.0
02:01~14:01~04:02 0.03335 3.0 | 02:18~14:01~16:02 0.02222 2.0
02:01~14:01~04:04 0.01111 1.0 | 01:01~13:01~04:02 0.02222 2.0
02:01~14:01~04:07 0.02222 2.0 | 25:01~40:05~08:02 0.02222 2.0
02:01~14:01~08:02 0.01111 1.0 | 25:01~13:01~08:02 0.02222 2.0

...

3.3. Multi-locus analyses 34

CHAPTER

FOUR

CONTRIBUTING TO PYPOP

Contributions to PyPop are welcome, and they are greatly appreciated! Every little bit helps, and credit will always be given.

4.1 Reporting and requesting

Did you find a bug?
When reporting a bug1please use one of the provided issue templates if applicable, otherwise just start a blank issue and
describe your situation. Here is a checklist:

• Check previous issues. Ensure the bug was not already reported by searching on GitHub under Issues2.

• Provide complete self-contained examples. If you’re unable to find an open issue addressing the problem, open a new
one. Be sure to include a title and clear description, as much relevant information as possible, and a code sample or an
executable test case (including any input files) demonstrating the expected behavior that is not occurring.

• Use templates. If possible, use the relevant bug report templates to create the issue. For a standard bug report (including
installation issues), please use this: bug report template3, for feature requests or documentation issues, see below.

• Provide full commands and errors as plaintext, not screenshots. When you are including the output of an error in
your bug report (whether an installation error, a build error, an error running pypop or an error building docs), please
cut-and-paste from your console application or terminal, the entire set of commands leading up to the error, along with
the complete error output as a single plaintext output. E.g. here is an example error from running pypop on a badly
formed .ini file:

$ pypop -c minimal.ini USAFEL-UchiTelle-small.pop
Traceback (most recent call last):
File "/home/user/.conda/envs/pypop/bin/pypop", line 8, in <module>

sys.exit(main())
File "/home/user/.conda/envs/pypop/lib/python3.10/site-packages/PyPop/pypop.py", line 250, in main

config = getConfigInstance(configFilename, altpath)
File "/home/user/.conda/envs/pypop/lib/python3.10/site-packages/PyPop/Main.py", line 62, in getConfigInstance

config.read(configFilename)
File "/home/user/.conda/envs/pypop/lib/python3.10/configparser.py", line 698, in read

self._read(fp, filename)
File "/home/user/.conda/envs/pypop/lib/python3.10/configparser.py", line 1086, in _read
raise MissingSectionHeaderError(fpname, lineno, line)

configparser.MissingSectionHeaderError: File contains no section headers.
file: 'minimal.ini', line: 4
' j[General]\n'

Please do not just post screenshots of commands and error output. It’s OK if you want to also include a screenshot
as supplement, but be sure you also include the commands and output as plaintext as well. (If the output is too long for
including inline as a comment on the issue, you can save it in a file, and drag-and-drop it into an issue comment).

• Include environment. When reporting bugs, especially during installation, please run the following and include the
output of:

35

https://github.com/alexlancaster/pypop/issues
https://github.com/alexlancaster/pypop/issues
https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=bug&projects=&template=bug_report.yml

PyPop User Guide, Release 1.4.0

echo $CPATH
echo $LIBRARY_PATH
echo $PATH
which python

If you are running on MacOS, and you used the MacPorts installation method, please also run and include the output of:

port installed

• Keep each issue focused on one specific problem. Each issue should be focused on one problem. Don’t use an issue
for open-ended discussion, or as a place to collect all issues with pypop you run into. If, during the comments, you
discover another bug, unrelated to the current issue, please open up a new issue and reference it in the current issue.

• Run the test suite. In many cases, especially if you are investigating a new platform (e.g. new architecture) developers
may ask you run the full test suite via pytest, see run unit tests. in “verbose” mode (i.e. pytest -v). If you do this,
please supply the output of the resulting temporary directories on your issue (see the unit test section for more details).
Note that you will likely need to clone the main repository as the unit tests are not distributed with the binary wheels.

Documentation improvements
pypop could always use more documentation, whether as part of the official docs, in docstrings, or even on the web in blog
posts, articles, and such. Write us a documentation issue4describing what you would like to see improved in here.

If you are able to contribute directly (e.g., via a pull request), please read our website contribution guide.

Feature requests and feedback
The best way to send feedback is to file an issue using the feature template5.

If you are proposing a feature:

• Explain in detail how it would work.

• Keep the scope as narrow as possible, to make it easier to implement.

• Remember that this is a volunteer-driven project, and that code contributions are welcome

4.2 Making a code contribution
To contribute new code that implement a feature, or fix a bug, this section provides a step-by-step guide to getting you set-up.
The main steps are:

1. forking the repository (or “repo”)

2. cloning the main repo on to your local machine

3. making a new branch

4. installing a development version on your machine

5. updating your branch when “upstream” (the main repository) has changes to include those changes in your local branch

6. running code quality checks, like unit tests and pre-commit checks, using nox (or the tools directly)

7. updating AUTHORS.rst

8. making a pull request (including a description of your changes suitable for inclusion in NEWS.md)

4.2. Making a code contribution 36

https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=documentation&projects=&template=documentation.yml
https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=enhancement&projects=&template=feature_request.yml

PyPop User Guide, Release 1.4.0

Fork this repository
Fork this repository before contributing6. Forks creates a cleaner representation of the contributions to the project7.

Clone the main repository
Next, clone the main repository to your local machine:

git clone https://github.com/alexlancaster/pypop.git
cd pypop

Add your fork as an upstream repository:

git remote add myfork git://github.com/YOUR-USERNAME/pypop.git
git fetch myfork

Make a new branch
From the main branch create a new branch where to develop the new code.

git checkout main
git checkout -b new_branch

Note the main branch is from the main repository.

Build locally and make your changes
Now you are ready to make your changes. First, you need to build pypop locally on your machine, and ensure it works, see
the separate section on building and installing a development version.

Once you have done the installation and have verified that it works, you can start to develop the feature, or make the bug fix,
and keep regular pushes to your fork with comprehensible commit messages.

git status
git add # (the files you want)
git commit # (add a nice commit message)
git push myfork new_branch

While you are developing, you should use nox to frequently run unit tests and check for code quality (or temporary wheels),
as described in use nox for testing and code quality.

Keep your branch in sync with upstream
You should keep your branch in sync with the upstream main branch. For that:

git checkout main # return to the main branch
git pull # retrieve the latest source from the main repository
git checkout new_branch # return to your devel branch
git merge --no-ff main # merge the new code to your branch

At this point you may need to solve merge conflicts if they exist. If you don’t know how to do this, I suggest you start by
reading the official docs8

You can push to your fork now if you wish:

git push myfork new_branch

And, continue doing your developments are previously discussed.

4.2. Making a code contribution 37

https://github.com/alexlancaster/pypop/network/members
https://github.com/alexlancaster/pypop/network
https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github

PyPop User Guide, Release 1.4.0

Use nox for testing and code quality
In addition to installing PyPop for development (see earlier sections), we have developed configurations for nox9to simplify
common developer tasks such as running tests, code formatting checks, and documentation builds. nox runs tasks in isolated
Python environments, ensuring consistency across contributors and CI pipelines. Install nox (within the same environment as
used for your build and install):

pip install nox

You can list the currently configured developer tasks available to run via nox, by calling nox itself:

nox --list

We describe some of the tasks that we recommend contributors run regularly during development of code contributions, below.

Run unit tests

To run the full (pytest-based) unit test suite:

nox --sessions tests

You should also frequently use nox to run the unit tests as you are developing your code, to ensure that you don’t inadvertently
break anything, especially before commits, or creating a Pull Request from your branch. (-s is the short option --sessions).

These are exactly the same tests that will be performed online via Github Actions continuous integration (CI). This project
follows CI good practices (let us know if something can be improved).

Preserving output from unit tests

Running nox -s tests uses pytest within an isolated environment. To debug tests or preserve output from temporary
directories, you may prefer to run pytest directly:
pytest -s -v tests

Supplying the -v verbose option will preserve the run-time output of unit tests that write files to disk in temporary di-
rectories unique for each run. The format of the output directories is `run_test_<test-name>_<unique_id>, e.g. the
directories created will look similar to the following:
run_test_AlleleColon_HardyWeinberg_u3dnf99y
run_test_USAFEL_49h_exhg

These directories store per-test outputs but are normally deleted unless output is preserved.

If you run into errors during your initial installation, please first carefully repeat and/or check your installation. If you still get
errors, file a bug, and include the output of pytest run in verbose mode and capturing the output, as described above.

Run pre-commit checks

All pull requests (PRs) submitted to PyPop will be automatically run through a series pre-configured pre-commit
checks10(called “hooks”), configured in the .pre-commit-config.yaml YAML file11.

To run these checks locally:

nox -s precommit

These checks reformat code and catch errors in:

• Python code (uses ruff and, ruff-format hooks)

• C extension code (uses clang-format to format code according to the LLVM style)

4.2. Making a code contribution 38

https://nox.thea.codes/
https://pre-commit.com/
https://github.com/alexlancaster/pypop/blob/main/.pre-commit-config.yaml

PyPop User Guide, Release 1.4.0

• Common formatting errors in documentation, including Markdown and RST

• Check code and documentation for spelling errors (via codespell)

Running the precommit checks will result in either:

1. All checks passing (no action needed)

2. Some checks fail, this can be due either to:

• Code being reformatted to coding standards (use git diff to see the additional changes), but are otherwise OK.
Generally, all you need to do then is to re-run the nox -s precommit command, and it will proceed according
to (1)

• An error is detected in the code that requires manual intervention (e.g. non-standard Python construct, formatting
issue, spelling error). Please fix this and re-run nox -s precommit until it passes.

pre-commit checks are the same checks that will be enforced automatically in your PR via GitHub Actions CI. Running them
locally before submitting a PR will speed up acceptance. The automated pre-commit checks will be run just once upon initial
PR submission, and results posted on the PR. This may also result in changes to the code (mainly reformatting that can be
applied automatically). You will need to ensure that you pull these changes back to your local checkout before applying new
changes.

pre-commit Git Hook

We highly recommend you enable pre-commit Git hook in your local checkout, before you commit to your PR branch,
so you can catch errors early. Ensuring your code passes pre-commit checks will speed the merging of your PR into the
main branch, as the code will already be in a good state for merging.

To enable checks, first ensure that pre-commit is installed, and then install the hooks:
pip install pre-commit
pre-commit install --install-hooks

You can then manually trigger checks using pre-commit (i.e. outside nox):
pre-commit run

If you attempt to commit to the repo, e.g. using a command like git commit -a, pre-commit checks will run on your
changed files, and behave as if pre-commit run had been called directly. Once all checks pass the git commit command
will commit to the repository and you can git push your changes.

Build distribution packages

To locally build sdist and wheel packages for testing, you can run the build command:

nox -s build

Update AUTHORS.rst
Also add your name to the author table at AUTHORS.rst, so you will also be included in the periodic Zenodo software releases
(see also the section on Crediting contributors).

Make a Pull Request
Once you are finished, create a pull request to the main repository and engage with the developers.

When you create the pull request in the initial submission box, you should create a description of your changes with an
explanatory bullet list of the contributions. Please note if any of your changes will break existing behaviour or anything else
that would be important for an end-user to know. This description should be in Markdown format. Here is an example:

4.2. Making a code contribution 39

PyPop User Guide, Release 1.4.0

New features

- here goes my new additions, explain them shortly and well
- this feature will require an an update to your `.ini` file

This will be used to populate the Release Notes and eventually be included in the NEWS.md file.

If you need some code review or feedback while you’re developing the code, you can also make a pull request, even if you’re
not fully finished.

However, before submitting a Pull Request, verify your development branch passes all tests as described above . If you
are developing new code you should also implement new test cases.

Pull Request checklist

Before requesting a final merge, you should:

1. Make sure your PR passes all existing pytest tests.

2. Add unit tests if you are developing new features and make sure these also pass.

3. Run and address the pre-commit checks as described above.

4. Update documentation when there’s new API, functionality etc.

5. In the submission for the PR, include a description of the changes, in markdown format, suitable for eventual inclusion
in NEWS.md.

6. Add yourself to AUTHORS.rst.

Note

Note that the pre-commit checks are automatically run on all new PRs, and this may result in changes to your code, please
approve or otherwise ensure these changes make it back into your development branch.

4.3 Installation for developers
Once you have setup your branch as described in making a code contribution, above, you are ready for the four main steps of
the developer installation:

1. install a build environment

2. build

3. run tests

Note

Note that you if you need to install PyPop from source, but do not intend to contribute code, you can skip creating your
own forking and making an additional branch, and clone the main upstream repository directly:
git clone https://github.com/alexlancaster/pypop.git
cd pypop

For most developers, we recommend using the miniconda approach described below.

4.3. Installation for developers 40

PyPop User Guide, Release 1.4.0

Install the build environment
To install the build environment, you should choose either conda or system packages. Once you have chosen and installed the
build environment, you should follow the instructions related to the option you chose here in all subsequent steps.

Install build environment via miniconda (recommended)

1. Visit https://docs.conda.io/en/latest/miniconda.html to download the miniconda installer for your platform, and follow
the instructions to install.

In principle, the rest of the PyPop miniconda installation process should work on any platform that is sup-
ported by miniconda, but only Linux and MacOS have been tested in standalone mode, at this time.

2. Once miniconda is installed, create a new conda environment, using the following commands:

conda create -n pypop3 gsl swig python=3

This will download and create a self-contained build-environment that uses of Python to the system-installed one, along
with other requirements. You will need to use this this environment for the build, installation and running of PyPop.
The conda environment name, above, pypop3, can be replaced with your own name.

When installing on MacOS, before installing conda, you should first to ensure that the Apple Command Line
Developer Tools (XCode) are installed12, so you have the compiler (clang, the drop-in replacement for gcc),
git etc. conda is unable to include the full development environment for clang as a conda package for legal
reasons.

3. Activate the environment, and set environments variables needed for compilation:

conda activate pypop3
conda env config vars set CPATH=${CONDA_PREFIX}/include:${CPATH}
conda env config vars set LIBRARY_PATH=${CONDA_PREFIX}/lib:${LIBRARY_PATH}
conda env config vars set LD_LIBRARY_PATH=${CONDA_PREFIX}/lib:${LD_LIBRARY_PATH}

4. To ensure that the environment variables are saved, reactivate the environment:

conda activate pypop3

5. Skip ahead to Build PyPop.

Install build environment via system packages (advanced)

Unix/Linux:

1. Ensure Python 3 version of pip is installed:

python3 -m ensurepip --user --no-default-pip

Note the use of the python3 - you may find this to be necessary on systems which parallel-install both Python
2 and 3, which is typically the case. On newer systems you may find that python and pip are, by default,
the Python 3 version of those tools.

2. Install packages system-wide:

1. Fedora/Centos/RHEL

sudo dnf install git swig gsl-devel python3-devel

2. Ubuntu

sudo apt install git swig libgsl-dev python-setuptools

4.3. Installation for developers 41

https://docs.conda.io/en/latest/miniconda.html
https://mac.install.guide/commandlinetools/4.html

PyPop User Guide, Release 1.4.0

MacOS X

1. Install the developer command-line tools: https://developer.apple.com/downloads/ (includes git, gcc). (Note that you
may have to sign-in/create a developer account with Apple using your Apple ID to access this link.). You may also be
able to install via the terminal and skip the above step by running xcode-select –-install (but first check to see if
you already have a version installed, see https://mac.install.guide/commandlinetools/4.html for more details).

2. Visit https://www.macports.org and follow the instructions there to install the latest version of MacPorts for your version
of MacOS X.

3. Set environment variables to use macports version of Python and other packages, packages add the following to ~/.
bash_profile

export PATH=/opt/local/bin:$PATH
export LIBRARY_PATH=/opt/local/lib/:$LIBRARY_PATH
export CPATH=/opt/local/include:$CPATH

4. Rerun your bash shell login in order to make these new exports active in your environment. At the command line type:

exec bash -login

5. Install dependencies via MacPorts and set Python version to use (FIXME: currently untested!)

sudo port install swig-python gsl py39-numpy py39-lxml py39-setuptools py39-pip py39-pytest
sudo port select --set python python39
sudo port select --set pip pip39

6. Check that the MacPorts version of Python is active by typing: which python, if it is working correctly you should see
/opt/local/bin/python.

Windows

You will need a compiler installed, the GitHub Action is tested using Microsoft Visual Studio 17 202213(you can also download
2019 and earlier versions14). We also recommend that you setup the NuGet package repository15to install following build-time
dependencies.

Note

Please note that we have not directly tested building on standalone Windows machines, only via the GitHub runner work-
flows. In addition, the ARM64 wheels are cross-compiled on the GitHub runner, which cannot run the resulting wheels,
therefore all unit tests are skipped.

1. Install swig: when compiled on a GitHub runner, the swig package is part of the default image. If compiled on a
standalone-mode Windows machine, swig may be available as NuGet package, and installable (untested):

nuget install swig

2. Install gsl.

• X64: install the gsl package:

nuget install gsl-msvc14-x64 -Version 2.3.0.2779

• ARM64: The NuGet repository doesn’t have an ARM64 version of gsl, it is necessary to build a .nupkg from
source (see details in DEV_NOTES.md16). We have made this available in vendor-binaries17directory of the repo.
To install the package from top-level repository run:

nuget install gsl-msvc14-arm64 -Source "%CD%\\vendor-binaries

4.3. Installation for developers 42

https://developer.apple.com/downloads/
https://mac.install.guide/commandlinetools/4.html
https://www.macports.org
https://visualstudio.microsoft.com/downloads/
https://visualstudio.microsoft.com/vs/older-downloads/
https://www.nuget.org/packages
https://github.com/alexlancaster/pypop/blob/main/DEV_NOTES.md
https://github.com/alexlancaster/pypop/tree/main/vendor-binaries

PyPop User Guide, Release 1.4.0

3. Before starting the build process, you need to modify the environment variables CPATH and LIBRARY_PATH to point to
the installed gsl package, e.g. for X64:

CPATH="gsl-msvc14-x64.2.3.0.2779\\build\\native"
LIBRARY_PATH="gsl-msvc14-x64.2.3.0.2779\\build\\native\\static"

Build PyPop
You should choose either of the following two approaches. Don’t try to mix-and-match the two. The build-and-install approach
is only recommended if don’t plan to make any modifications to the code locally.

Build-and-install (not recommended for developers)

Once you have setup your environment and cloned the repo, you can use the following one-liner to examine the setup.py and
pull all the required dependencies from pypi.org and build and install the package.

Note that if you use this method and install the package, it will be available to run anywhere on your system, by
running pypop.

If you use this installation method, changes you make to the code, locally, or via subsequent git pull requests
will not be available in the installed version until you repeat the pip install command.

1. if you installed the conda development environment, use:

pip install .[test]

(the [test] keyword is included to make sure that any package requirements for the test suite are installed
as well).

2. if you installed a system-wide environment, the process is slightly different, because we install into the user’s $HOME/.
local rather than the conda environment:

pip install --user .[test]

3. PyPop is ready-to-use, you should run unit tests.

4. if you later decide you want to switch to using the developer approach, below, follow the cleaning up build before
starting.

Build-and-install developer-mode (recommended for developers)

Installing in “developer” or “edit” mode18should be used by developers, or anyone who wants to make changes to PyPop
code. It is almost identical to the regular installation above (e.g. it will pull down all required dependencies automatically),
but instead you will add the --editable option (-e is the short version) to the pip install command. In edit mode, any
changes you make in your local code will be reflected in the installed version.

1. conda

pip install --editable .[test]

2. system-wide

pip install --user --editable .[test]

3. The scripts pypop and popmeta will operate the same way, and any changes in the underlying Python .py files will be
picked up by the scripts.

4.3. Installation for developers 43

https://setuptools.pypa.io/en/latest/userguide/development_mode.html

PyPop User Guide, Release 1.4.0

Cleaning up build

To clean up, first uninstall PyPop (whether you installed in editable mode or not):

pip uninstall pypop-genomics

In addition, to clean-up any compiled files and force a recompilation from scratch, run the clean command:

./setup clean --all

4.4 Install package from GitHub Releases
Packages that are released to PyPI, are also available via the releases on the GitHub release page:

https://github.com/alexlancaster/pypop/releases

í Warning

We recommend installing binary packages using the main PyPI repository, not via the GitHub release packages. However
from time to time, we also sometimes make binary packages that are not necessarily also released via PyPI. In addition, if
PyPI is unavailable, you may want to install directly from the GitHub release. These instructions will help you do that.

Installing these packages is similar to installing via PyPI, except that you need to explicitly provide a URL to the release page.

1. First, visit the release page, and choose the release version you wish to install (usually the most recent), and note the
release tag (e.g. v1.0.0).

Release version numbers

Note that version of the release is slightly different to the git tag. This is because the git tag follows Semantic
Versioning19, which Python internally normalizes and abbreviates. So the release with the git tag v1.0.0 is actually
version 1.0.0 of the pypop-genomics package, and the version that pip “sees” (the difference is more notable
with prereleases which might have a git tag of v1.0.0-rc2 but the PyPI version will be 1.0.0rc2).

2. Next, use pip to install the package by running a command of the form (this will select and install the correct wheel for
your Python version and operating system automatically):

pip install pypop-genomics -f https://github.com/alexlancaster/pypop/releases/expanded_assets/<TAG_NAME>

where <TAG_NAME> is replaced with a specific tag, e.g. for the example given above, you would run:

pip install pypop-genomics -f https://github.com/alexlancaster/pypop/releases/expanded_assets/v1.0.0

You can also manually download the specific wheel from the github release webpage and install directly, e.g.:

pip install pypop_genomics-1.0.0-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl

4.5 Making a documentation or website contribution
Interested in maintaining the PyPop website and/or documentation, such as the PyPop User Guide? Here are ways to help.

4.4. Install package from GitHub Releases 44

https://github.com/alexlancaster/pypop/releases
https://semver.org/
https://semver.org/

PyPop User Guide, Release 1.4.0

Overview
All the documentation (including the website homepage) are maintained in this directory (and subdirectories) as reStructured-
Text20(.rst) documents. reStructuredText is very similar to GitHub markdown (.md) and should be fairly self-explanatory
to edit (especially for pure text changes). From the .rst “source” files which are maintained here on github, we use sphinx21to
generate (aka “compile”) the HTML for both the pypop.org user guide and and PDF (via LaTeX) output. We have setup a
GitHub action, so that as soon as a documentation source file is changed, it will automatically recompile all the documentation,
update the gh-pages branch (which is synced to the GitHub pages) and update the files on the website.

Here’s an overview of the process:

.rst files -> sphinx -> HTML / PDF -> push to gh-pages branch -> publish on pypop.org

This means that any changes to the source will automatically update both website home page the documentation.

Once any changes are pushed to a branch (as described below), the GitHub action will automatically rebuild the website, and
the results will be synced to a “staging” version of the website at:

• https://alexlancaster.github.io/beta.pypop.org/

Structure
Here’s an overview of the source files for the website/documentation located in the website subdirectory at the time of writing.
Note that some of the documentation and website files, use the include:: directive to include some “top-level” files, located
outside website like README.rst and CONTRIBUTING.rst:

• index.rst (this is the source for the homepage at http://pypop.org/)

• conf.py (Sphinx configuration file - project name and other global settings are stored here)

• docs (directory containing the source for the PyPop User Guide, which will eventually live at http://pypop.org/docs).

– index.rst (source for the top-level of the PyPop User Guide)

– guide-chapter-install.rst (pulls in parts of the top-level README.rst)

– guide-chapter-usage.rst

– guide-chapter-instructions.rst

– guide-chapter-contributing.rst (pulls in top-level CONTRIBUTING.rst that contains the source of the text
that you are reading right now)

– guide-chapter-changes.rst (pulls in top-level NEWS.md and AUTHORS.rst)

– licenses.rst (pulls in top-level LICENSE)

– biblio.rst

– pypop.bib (BibTeX source file for bibliography)

• html_root (any files or directories committed in this directory will appear at the top-level of the website)

– psb-pypop.pdf (e.g. this resides at http://pypop.org/psb-pypop.pdf)

– tissue-antigens-lancaster-2007.pdf

– PyPopLinux-0.7.0.tar.gz (old binaries - will be removed soon)

– PyPopWin32-0.7.0.zip

– popdata (directory - Suppl. data for Solberg et. al 2018 - http://pypop.org/popdata/)

• reference (directory containing the old DocBook-based documentation, preserved to allow for unconverted files to be
converted later, this directory is ignored by the build process)

4.5. Making a documentation or website contribution 45

https://docutils.sourceforge.io/rst.html
https://docutils.sourceforge.io/rst.html
https://www.sphinx-doc.org/en/master/
https://alexlancaster.github.io/beta.pypop.org/
http://pypop.org/
http://pypop.org/docs
http://pypop.org/psb-pypop.pdf
http://pypop.org/popdata/

PyPop User Guide, Release 1.4.0

Modifying documentation
Minor modifications

For small typo fixes, moderate copyedits at the paragraph level (e.g. adding or modifying paragraphs with little or no embedded
markup), you can make changes directly on the github website.

1. navigate to the .rst file you want to modify in the GitHub code directory, you’ll see a preview of how most of the .rst
will be rendered

2. hover over the edit button - you’ll see an “Edit the file in a fork in your project” (if you are already a project collaborator,
you may also have the optional of creating a branch directly in the main repository).

3. click it and it will open up a window where you can make your changes

4. make your edits (it’s a good idea to look at the preview tab periodically as you make modifications)

5. once you’ve finished with the modifications, click “Commit changes”

6. put in an a commit message, and click “Propose changes”

7. this will automatically create a new branch in your local fork, and you can immediately open up a pull-request by clicking
“Create pull request”

8. open up a pull-request and submit - new documentation will be automatically built and reviewed. if all is good, it will
be merged by the maintainer and made live on the site.

Major modifications

For larger structural changes involving restructuring documentation or other major changes across multiple .rst files, it is
highly recommended that you should make all changes in your own local fork, by cloning the repository on your computer
and then building the documentation locally. Here’s an overview of how to do that:

1. make a fork of pypop if you haven’t already (see previous section)

2. clone the fork and add your fork as an upstream repository on your local computer, and make a new branch. Note that
you do not have to build the PyPop software first in order to build the documentation, you can build them separately.

3. make your changes to your .rst files and/or conf.py

4. build the HTML documentation, using nox, which creates a temporary virtual environment with sphinx and sphinx
extensions (see nox installation):

nox -s docs

5. view the local documentation: you can open up browser and navigate to the index.html in the top-level of the newly-
created _htmlbuild directory

6. use git commit to commit your changes to your local fork.

7. open up a pull-request against the upstream repository

Building the PDF for the PyPop User Guide is a bit more involved, as you will need to have various TeX packages installed.

1. install the LaTeX packages (these are packages needed for Ubuntu, they may be different on your distribution):

sudo apt-get install -y latexmk texlive-latex-recommended texlive-latex-extra texlive-fonts-recommended texlive-
→˓fonts-extra texlive-luatex texlive-xetex

Ubuntu LaTeX packages

4.5. Making a documentation or website contribution 46

PyPop User Guide, Release 1.4.0

The most up to date list of LaTeX packages for Ubuntu are in the “Sphinx build” section of the workflow
.github/workflows/documentation.yaml22that builds the documentation upon deployment. Consult this if the list
of packages, becomes out of date.

2. build the LaTeX and then compile the PDF, using the nox command:

nox -s docs_pdf

3. the user guide will be generated in _latexbuild/pypop-guide.pdf

Note

To change the target output directory of either the HTML or PDF documentation, you can supply the directory name on
the nox command-line, after a -- e.g.
nox -s docs -- output_dir

4.6 Crediting contributors

Note

These guidelines were heavily adapted from similar guidelines23in the PyGMT project.

We define contributions in a broad way: including both writing code as well as documentation, and reviewing issues and PRs
etc. Here are some ways we credit contributors:

AUTHORS.rst, NEWS.md and GitHub Release Notes
Anyone who has contributed a pull request to the project is welcome to add themselves (or request to be added) to AUTHORS.
rst, which is part of the repository and included with with distributions.

Every time we make a release, everyone who has made a commit to the repository since the previous release will be mentioned
in either the NEWS.md or in the GitHub Release Notes.

Authorship on Zenodo archives of releases
Anyone who has contributed to the repository (i.e., appears on git log) will be invited to be an author on the Zenodo24archive
of new releases.

To be included as an author, you must add the following to the AUTHORS.rst file of the repository:

1. Full name (and optional link to your website or GitHub page)

2. ORCID25(optional)

3. Affiliation (optional)

The order of authors is generally defined by the number of commits to the repository (git shortlog -sne). The order can
also be changed on a case-by-case basis, such as contributions to PyPop project that due not relate to commit numbers, such
as writing grants/proposals, and other programming efforts (including reviewing PRs).

If you have contributed and do not wish to be included in Zenodo archives, either don’t add yourself to AUTHORS.rst, or open
an issue or file a PR that:

1. Removes yourself from AUTHORS.rst, or;

4.6. Crediting contributors 47

https://github.com/alexlancaster/pypop/blob/main/.github/workflows/documentation.yaml
https://github.com/GenericMappingTools/pygmt/blob/main/AUTHORSHIP.md
https://zenodo.org/
https://orcid.org

PyPop User Guide, Release 1.4.0

2. Indicates next to your name on AUTHORS.rst that you do not wish to be included with something like (not included
in Zenodo).

Note that authors included in the Zenodo archive will also have their name listed in the CITATION.cff file. This is a machine
(and human) readable file that enables citation of PyPop easily.

Scientific publications (papers)
From time to time we may write academic papers for PyPop, e.g., for major changes or significant new components of the
package.

To be included as an author on the paper, you must have

1. either made multiple and regular contributions to the PyPop repository; or, have made other non-coding contributions
(or both);

2. have participated in the writing and reviewing of the paper.

3. added your full name, affiliation, and (optionally) ORCID to the paper.

4. written and/or read and review the manuscript in a timely manner and provide comments on the paper

Notes
1. https://github.com/alexlancaster/pypop/issues

2. https://github.com/alexlancaster/pypop/issues

3. https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=bug&projects=&template=bug\protect_report.yml

4. https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=documentation&projects=&template=documentation.yml

5. https://github.com/alexlancaster/pypop/issues/new?assignees=&labels=enhancement&projects=&template=feature\protect_request.yml

6. https://github.com/alexlancaster/pypop/network/members

7. https://github.com/alexlancaster/pypop/network

8. https://docs.github.com/en/pull-requests/collaborating-with-pull-requests/addressing-merge-conflicts/resolving-a-merge-conflict-on-github

9. https://nox.thea.codes/

10. https://pre-commit.com/

11. https://github.com/alexlancaster/pypop/blob/main/.pre-commit-config.yaml

12. https://mac.install.guide/commandlinetools/4.html

13. https://visualstudio.microsoft.com/downloads/

14. https://visualstudio.microsoft.com/vs/older-downloads/

15. https://www.nuget.org/packages

16. https://github.com/alexlancaster/pypop/blob/main/DEV\protect_NOTES.md

17. https://github.com/alexlancaster/pypop/tree/main/vendor-binaries

18. https://setuptools.pypa.io/en/latest/userguide/development\protect_mode.html

19. https://semver.org/

20. https://docutils.sourceforge.io/rst.html

21. https://www.sphinx-doc.org/en/master/

22. https://github.com/alexlancaster/pypop/blob/main/.github/workflows/documentation.yaml

23. https://github.com/GenericMappingTools/pygmt/blob/main/AUTHORSHIP.md

24. https://zenodo.org/

25. https://orcid.org

4.6. Crediting contributors 48

CHAPTER

FIVE

AUTHORS AND HISTORY

5.1 PyPop contributors
(Listed in alphabetical order)

Author ORCiD Affiliation Contribution
Karl Kornel 0000-0001-5847-53301 Stanford Research Computing

Center
Contributed containerization

Alex Lancaster 0000-0002-0002-92632 Amber Biology LLC, Ronin In-
stitute

Lead developer. Co-designer of
Python framework: author of main
engine, text file parser, Python ex-
tension module framework using
SWIG, XML output and XSLT
post-processing framework (to gen-
erate plain text and HTML output).

Steven J. Mack 0000-0001-9820-95473 University of California, San
Francisco

Contributed bug reports, documen-
tation, reviewed PRs.

Michael P. Mariani 0000-0001-5852-05174 Mariani Systems LLC and Uni-
versity of Vermont

Contributed bug reports, documen-
tation, reviewed PRs.

Diogo Meyer 0000-0002-7155-56745 University of São Paulo Reviewed and tested PyPop, con-
tributed some statistical analysis
code.

Mark P. Nelson University of California, Berke-
ley

Co-designer of Python framework:
implemented and maintained
Python modules, particularly the
module for Hardy-Weinberg analy-
sis. Updated and maintained XSLT
code.

Richard M. Single 0000-0001-6054-65056 University of Vermont Author of haplotype frequency
and linkage disequilibrium anal-
ysis module emhaplofreq.
Contributed documentation and
testing/reviewing PRs.

Vanessa Sochat 0000-0002-4387-38197 Lawrence Livermore National
Laboratory

Contributed to the Python 3 port.

Owen Solberg 0000-0003-3060-97098 Implemented filter modules, in-
cluding conversion to allele name
information to sequence data.

Jurriaan H. Spaaks 0000-0002-7064-40699 Netherlands eScience Center Contributed to Zenodo upload
GitHub action

continues on next page

49

https://orcid.org/0000-0001-5847-5330
https://orcid.org/0000-0002-0002-9263
https://orcid.org/0000-0001-9820-9547
https://orcid.org/0000-0001-5852-0517
https://orcid.org/0000-0002-7155-5674
https://orcid.org/0000-0001-6054-6505
https://orcid.org/0000-0002-4387-3819
https://orcid.org/0000-0003-3060-9709
https://orcid.org/0000-0002-7064-4069

PyPop User Guide, Release 1.4.0

Table 5.1 – continued from previous page
Author ORCiD Affiliation Contribution
Glenys Thomson 0000-0001-5235-415910 University of California, Berke-

ley
Principal investigator

Yingssu Tsai11 0009-0006-0162-606612 University of California, Berke-
ley

Implemented prototype of the allele
names to sequence conversion filter
module.

Gordon Webster 0009-0009-2862-046713 Amber Biology LLC Contributed documentation and
testing framework.

Third-party modules
Included with permission, or via GPL-compatible licenses.

gthwe
The Hardy-Weinberg “exact test” implementation is a modified version of Guo & Thompson’s (Guo and Thompson,
1992) code. Dr. Sun-Wei Guo has kindly allowed us to release the code under the GNU General Public License14.
Original code available at https://sites.stat.washington.edu/thompson/Genepi/Hardy.shtml

slatkin-exact/monte-carlo.c
Montgomery Slatkin’s implementation of a Monte Carlo approximation of the Ewens-Watterson exact test of neutrality
(Slatkin, 1994, Slatkin, 1996). Original code can be found at: http://ib.berkeley.edu/labs/slatkin/monty/Ewens_exact.
program.

pval
The code in the ‘pval’ directory (with the exception of ‘pval.c’ the SWIG wrapper, 'pval_wrap.i’ and the Makefile)
is part of the R project’s ‘nmath’ numerical library http://www.r-project.org/ and is also licensed under the GNU General
Public License (GPL). Minor modifications have been made to allow the module to build correctly.

5.2 PyPop Release History

1.4.0 - 2026-01-19
Features

• API changes (non-breaking): lowercase and rename modules (PEP8) and update docs (#33615)

• Unify PyPop logging using system logger; improve CLI/docs, and enhance tests. (#33516)

• Major revamp of docs: add API, update docstrings, allow for no text output mode for Main (#33017)

Bug Fixes

• Obsolete utils.OrderedDict: replace with built-in collections.OrderedDict (#36718)

• Replace deprecated numpy.lib.user_array.container in StringMatrix (#35919)

Internal

• Bump sphinx-togglebutton from 0.3.2 to 0.4.4 (#36520)

• Bump sphinx from 8.2.3 to 9.1.0 (#36021)

• Bump myst-parser from 4.0.1 to 5.0.0 (#36622)

• python(CI deps): bump cibuildwheel from 3.3.0 to 3.3.1 in /.github in the build-wheel-deps group (#36423)

• Bump rst2pdf from 0.103.1 to 0.104 (#36224)

• Update numpy requirement from <=2.4.0 to <=2.4.1 (#36325)

5.2. PyPop Release History 50

https://orcid.org/0000-0001-5235-4159
https://github.com/ystsai
https://orcid.org/0009-0006-0162-6066
https://orcid.org/0009-0009-2862-0467
http://www.gnu.org/licenses/gpl.html
https://sites.stat.washington.edu/thompson/Genepi/Hardy.shtml
http://ib.berkeley.edu/labs/slatkin/monty/Ewens_exact.program
http://ib.berkeley.edu/labs/slatkin/monty/Ewens_exact.program
http://www.r-project.org/
https://github.com/alexlancaster/pypop/releases/tag/v1.4.0
https://github.com/alexlancaster/pypop/pull/336
https://github.com/alexlancaster/pypop/pull/335
https://github.com/alexlancaster/pypop/pull/330
https://github.com/alexlancaster/pypop/pull/367
https://github.com/alexlancaster/pypop/pull/359
https://github.com/alexlancaster/pypop/pull/365
https://github.com/alexlancaster/pypop/pull/360
https://github.com/alexlancaster/pypop/pull/366
https://github.com/alexlancaster/pypop/pull/364
https://github.com/alexlancaster/pypop/pull/362
https://github.com/alexlancaster/pypop/pull/363

PyPop User Guide, Release 1.4.0

• Update numpy requirement from <=2.3.5 to <=2.4.0 (#35726)

• Bump the actions group with 3 updates (#35527)

• macos-13 GitHub runner deprecated, moving to macos-15-intel (#34228)

• Bump actions/checkout from 5 to 6 in the actions group (#34929)

• python(CI deps): bump cibuildwheel from 3.2.1 to 3.3.0 in /.github in the build-wheel-deps group (#34730)

• Update numpy requirement from <=2.3.4 to <=2.3.5 (#34631)

• Bump the actions group with 2 updates (#34132)

• Update numpy requirement from <=2.3.3 to <=2.3.4 (#33933)

• Bump setuptools-scm from 9.2.1 to 9.2.2 (#33834)

• Bump the actions group with 3 updates (#33335)

• python(CI deps): bump cibuildwheel from 3.2.0 to 3.2.1 in /.github in the build-wheel-deps group (#33436)

• Bump setuptools-scm from 9.2.0 to 9.2.1 (#33237)

• Major revamp of docs: add API, update docstrings, allow for no text output mode for Main (#33038)

Documentation

• Refactor doctests, enable documentation of dunder methods by default in API docs (#36839)

• API changes (non-breaking): lowercase and rename modules (PEP8) and update docs (#33640)

• Major revamp of docs: add API, update docstrings, allow for no text output mode for Main (#33041)

1.3.1] - 2025-10-07
Internal

• Update lxml requirement from <=6.0.1 to <=6.0.2 (#32642)

• python(CI deps): bump cibuildwheel from 3.1.4 to 3.2.0 in /.github in the build-wheel-deps group (#32843)

• Update numpy requirement from <=2.3.2 to <=2.3.3 (#32444)

Documentation

• Handle code change directives like changed, added, removed in PDF output (#32245)

• Update theme to pydata-sphinx-theme, add logo + website refresh (#32146)

1.3.0] - 2025-09-08
Features

• Change: filenames resolved relative to supplied --filename + enable Python 3.14 (#31847)

Internal

• Bump actions/setup-python from 5 to 6 in the actions group (#31948)

• Update MacOS cibuildwheel config to handle brew changes (#31749)

• Update lxml requirement from <=6.0.0 to <=6.0.1 (#31450)

• python(CI deps): bump cibuildwheel from 3.1.3 to 3.1.4 in /.github in the build-wheel-deps group (#31551)

• Bump setuptools-scm from 9.1.1 to 9.2.0 (#31252)

5.2. PyPop Release History 51

https://github.com/alexlancaster/pypop/pull/357
https://github.com/alexlancaster/pypop/pull/355
https://github.com/alexlancaster/pypop/pull/342
https://github.com/alexlancaster/pypop/pull/349
https://github.com/alexlancaster/pypop/pull/347
https://github.com/alexlancaster/pypop/pull/346
https://github.com/alexlancaster/pypop/pull/341
https://github.com/alexlancaster/pypop/pull/339
https://github.com/alexlancaster/pypop/pull/338
https://github.com/alexlancaster/pypop/pull/333
https://github.com/alexlancaster/pypop/pull/334
https://github.com/alexlancaster/pypop/pull/332
https://github.com/alexlancaster/pypop/pull/330
https://github.com/alexlancaster/pypop/pull/368
https://github.com/alexlancaster/pypop/pull/336
https://github.com/alexlancaster/pypop/pull/330
https://github.com/alexlancaster/pypop/releases/tag/v1.3.1
https://github.com/alexlancaster/pypop/pull/326
https://github.com/alexlancaster/pypop/pull/328
https://github.com/alexlancaster/pypop/pull/324
https://github.com/alexlancaster/pypop/pull/322
https://github.com/alexlancaster/pypop/pull/321
https://github.com/alexlancaster/pypop/releases/tag/v1.3.0
https://github.com/alexlancaster/pypop/pull/318
https://github.com/alexlancaster/pypop/pull/319
https://github.com/alexlancaster/pypop/pull/317
https://github.com/alexlancaster/pypop/pull/314
https://github.com/alexlancaster/pypop/pull/315
https://github.com/alexlancaster/pypop/pull/312

PyPop User Guide, Release 1.4.0

• Bump the actions group with 2 updates: download-artifact and checkout (#30953)

• Bump setuptools-scm from 8.3.1 to 9.1.1 (#31054)

• python(CI deps): bump cibuildwheel from 3.0.1 to 3.1.3 in /.github in the build-wheel-deps group (#30755)

• Update numpy requirement from <=2.3.1 to <=2.3.2 (#30656)

1.2.2] - 2025-07-28
Internal

• Add developer tasks using nox and overhaul developer documentation (#30357)

• Update numpy requirement from <=2.2.4 to <=2.3.1 (#29958)

• python(CI deps): bump sphinx from 8.0.2 to 8.2.3 in /.github in the documentation-deps group (#30059)

• python(CI deps): Bump cibuildwheel from 3.0.0 to 3.0.1 in /.github in the build-wheel-deps group (#29860)

• Update cibuildwheel to 3.0.0 (#29161)

• Update GSL build for new windows-2022 runners and GH actions (#29562)

• coding convention and pre-commit updates: move imports to top where possible (#29263)

• Update Windows image for CI: windows-2019 -> windows-2022 (#29464)

• Update lxml requirement from <=5.4.0 to <=6.0.0 (#29365)

Documentation

• Add developer tasks using nox and overhaul developer documentation (#30366)

• version pip install dependencies in documentation workflow to manage by dependabot (#29667)

• fix PDF generation and other website upgrades (#28668)

• Styling the homepage (#28369)

• Add missing citations and fix display, cleanup news (#28270)

1.2.1] - 2025-04-29
Features

• Add support for optional computation of pval using scipy and benchmarking tests (#25771)

Bug Fixes

• update all Linux images: musllinux_1_2, manylinux_2_28 + fix musllinux segfaults (#27272)

• Ensure long allele names in HW genotype tables don’t overlap (#25673)

Internal

• Update lxml requirement from <=5.3.2 to <=5.4.0 (#28074)

• Bump pypa/cibuildwheel from 2.23.2 to 2.23.3 and update runner to ubuntu-22.04 (#27975)

• Update lxml requirement from <=5.3.1 to <=5.3.2 (#27576)

• Bump pypa/cibuildwheel from 2.23.1 to 2.23.2 in the actions group (#27377)

• update all Linux images: musllinux_1_2, manylinux_2_28 + fix musllinux segfaults (#27278)

• Bump pypa/cibuildwheel from 2.23.0 to 2.23.1 in the actions group (#27079)

5.2. PyPop Release History 52

https://github.com/alexlancaster/pypop/pull/309
https://github.com/alexlancaster/pypop/pull/310
https://github.com/alexlancaster/pypop/pull/307
https://github.com/alexlancaster/pypop/pull/306
https://github.com/alexlancaster/pypop/releases/tag/v1.2.2
https://github.com/alexlancaster/pypop/pull/303
https://github.com/alexlancaster/pypop/pull/299
https://github.com/alexlancaster/pypop/pull/300
https://github.com/alexlancaster/pypop/pull/298
https://github.com/alexlancaster/pypop/pull/291
https://github.com/alexlancaster/pypop/pull/295
https://github.com/alexlancaster/pypop/pull/292
https://github.com/alexlancaster/pypop/pull/294
https://github.com/alexlancaster/pypop/pull/293
https://github.com/alexlancaster/pypop/pull/303
https://github.com/alexlancaster/pypop/pull/296
https://github.com/alexlancaster/pypop/pull/286
https://github.com/alexlancaster/pypop/pull/283
https://github.com/alexlancaster/pypop/pull/282
https://github.com/alexlancaster/pypop/releases/tag/v1.2.1
https://github.com/alexlancaster/pypop/pull/257
https://github.com/alexlancaster/pypop/pull/272
https://github.com/alexlancaster/pypop/pull/256
https://github.com/alexlancaster/pypop/pull/280
https://github.com/alexlancaster/pypop/pull/279
https://github.com/alexlancaster/pypop/pull/275
https://github.com/alexlancaster/pypop/pull/273
https://github.com/alexlancaster/pypop/pull/272
https://github.com/alexlancaster/pypop/pull/270

PyPop User Guide, Release 1.4.0

• Update numpy requirement from <=2.2.3 to <=2.2.4 (#26980)

• use pathlib rather than os + update pre-commit hooks (#26881)

• Simplify swig installation via PyPI package, other build cleanups (#26582)

• Bump pypa/cibuildwheel from 2.22.0 to 2.23.0 and pin swig on Linux (#26483)

• Update numpy requirement from <=2.2.2 to <=2.2.3 (#26184)

• Update lxml requirement from <=5.3.0 to <=5.3.1 (#25985)

• Tidy workflow and PR labeler (#26086)

Contributors:: @alexlancaster

1.2.0] - 2025-02-04
Features

• Add support for new HLA nomenclature including remote MSF sequence retrieval (#25287)

• Build Linux (aarch64) using new ARM64 runners (#25088)

• [EXPERIMENTAL] Build Windows ARM64-compatible wheels (#23589)

Bug Fixes

• Update all HLA nomenclature to correct version 3 allele names in unit tests and documentation (#25190)

• Restore makeNewPops and fix ParseAlleleCount, major doc upgrade (#24791)

• Restore functionality for [Sequence] filters: Python 3 upgrades (#24492)

• fix generation of schema.org citation format (#23393)

Internal

• Generate .zenodo.json metadata from CITATION.cff (#25394)

• Update numpy requirement from <=2.2.1 to <=2.2.2 by @dependabot[bot]95(#24596)

• Port metadata from setup.py to pyproject.toml (#24297)

• Overhaul C extension code: pre-commit and fix compiler warnings (#23998)

• Major cleanup of codebase: add and enforce pre-commit checks (#23899)

• Bump stefanzweifel/git-auto-commit-action from 4 to 5 in the actions group by @dependabot[bot]100(#237101)

• Code cleanups: address warnings and add pre-commit checks (#236102)

• Move codeql tests to ubuntu-latest (#234103)

• Update numpy requirement from <=2.2.0 to <=2.2.1 by @dependabot[bot]104(#232105)

• Update numpy requirement from <=2.1.3 to <=2.2.0 by @dependabot[bot]106(#231107)

• Bump pypa/cibuildwheel from 2.21.3 to 2.22.0 in the actions group by @dependabot[bot]108(#230109)

• Bump actions/setup-python from 4 to 5 in the actions group by @dependabot[bot]110(#229111)

5.2. PyPop Release History 53

https://github.com/alexlancaster/pypop/pull/269
https://github.com/alexlancaster/pypop/pull/268
https://github.com/alexlancaster/pypop/pull/265
https://github.com/alexlancaster/pypop/pull/264
https://github.com/alexlancaster/pypop/pull/261
https://github.com/alexlancaster/pypop/pull/259
https://github.com/alexlancaster/pypop/pull/260
https://github.com/alexlancaster/pypop/releases/tag/v1.2.0
https://github.com/alexlancaster/pypop/pull/252
https://github.com/alexlancaster/pypop/pull/250
https://github.com/alexlancaster/pypop/pull/235
https://github.com/alexlancaster/pypop/pull/251
https://github.com/alexlancaster/pypop/pull/247
https://github.com/alexlancaster/pypop/pull/244
https://github.com/alexlancaster/pypop/pull/233
https://github.com/alexlancaster/pypop/pull/253
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/245
https://github.com/alexlancaster/pypop/pull/242
https://github.com/alexlancaster/pypop/pull/239
https://github.com/alexlancaster/pypop/pull/238
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/237
https://github.com/alexlancaster/pypop/pull/236
https://github.com/alexlancaster/pypop/pull/234
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/232
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/231
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/230
https://github.com/apps/dependabot
https://github.com/alexlancaster/pypop/pull/229

PyPop User Guide, Release 1.4.0

Documentation

• Update all HLA nomenclature to correct version 3 allele names in unit tests and documentation (#251112)

• Update documentation for makeNewPops filter (#247113)

• Documentation updates for [Sequence] filters: (#244114)

• Add information on pre-commit checks (#240115)

Contributors:: @alexlancaster

1.1.2] - 2024-11-18
Features

• Add new command-line option --citation for installed version (#228116)

• enable PyPy 3.10 as numpy wheels now exist (#219117)

Internal

• Update numpy requirement from <=2.1.2 to <=2.1.3 by @dependabot (#226118)

• update x86 runner to macos-13, pin swig version (#227119)

• Bump pypa/cibuildwheel from 2.21.2 to 2.21.3 in the actions group by @dependabot (#225120)

• Bump pypa/cibuildwheel from 2.21.1 to 2.21.2 in the actions group by @dependabot (#224121)

• Update numpy requirement from <=2.1.1 to <=2.1.2 by @dependabot (#223122)

• Bump pypa/cibuildwheel from 2.20.0 to 2.21.1 in the actions group across 1 directory by @dependabot (#222123)

Documentation

• Add new command-line option --citation for installed version (#228124)

• Update to latest sphinx and add subtitle (#220125)

Contributors:: @alexlancaster

1.1.1] - 2024-09-10
Features

• Enable support for Python 3.13 (#217126)

Bug Fixes

• Pin gsl bottles to 2.7.1 on macOS to preserve 10.15/Catalina on x86 and 11.0/Big Sur compatibility + update
cibuildwheels (#212127)

Internal

• Update numpy requirement from <=2.1.0 to <=2.1.1 by @dependabot (#218128)

• Update numpy requirement from <=2.0.1 to <=2.1.0 by @dependabot (#216129)

• Update lxml requirement from <=5.2.2 to <=5.3.0 by @dependabot (#215130)

• Bump pypa/cibuildwheel from 2.19.2 to 2.20.0 in the actions group by @dependabot (#214131)

• Update numpy requirement from <=2.0.0 to <=2.0.1 by @dependabot (#213132)

• Update numpy requirement from <=1.26.4 to <=2.0.0 by @dependabot (#209133)

5.2. PyPop Release History 54

https://github.com/alexlancaster/pypop/pull/251
https://github.com/alexlancaster/pypop/pull/247
https://github.com/alexlancaster/pypop/pull/244
https://github.com/alexlancaster/pypop/pull/240
https://github.com/alexlancaster/pypop/releases/tag/v1.1.2
https://github.com/alexlancaster/pypop/pull/228
https://github.com/alexlancaster/pypop/pull/219
https://github.com/alexlancaster/pypop/pull/226
https://github.com/alexlancaster/pypop/pull/227
https://github.com/alexlancaster/pypop/pull/225
https://github.com/alexlancaster/pypop/pull/224
https://github.com/alexlancaster/pypop/pull/223
https://github.com/alexlancaster/pypop/pull/222
https://github.com/alexlancaster/pypop/pull/228
https://github.com/alexlancaster/pypop/pull/220
https://github.com/alexlancaster/pypop/releases/tag/v1.1.1
https://github.com/alexlancaster/pypop/pull/217
https://github.com/alexlancaster/pypop/pull/212
https://github.com/alexlancaster/pypop/pull/218
https://github.com/alexlancaster/pypop/pull/216
https://github.com/alexlancaster/pypop/pull/215
https://github.com/alexlancaster/pypop/pull/214
https://github.com/alexlancaster/pypop/pull/213
https://github.com/alexlancaster/pypop/pull/209

PyPop User Guide, Release 1.4.0

• Bump pypa/cibuildwheel from 2.19.0 to 2.19.1 in the actions group by @dependabot (#210134)

• Bump pypa/cibuildwheel from 2.18.1 to 2.19.0 in the actions group by @dependabot (#208135)

1.1.0] - 2024-05-30
This release increases the minimum macOS requirements to Catalina (Intel) and Big Sur (Silicon) to ensure binary compati-
bility with the GNU Scientific Library (gsl) on those platforms. Thanks to @sjmack for testing.

Internal

• Bump cibuildwheel from 2.17.0 to 2.18.1, increase minimum macOS requirements by @dependabot (#206136)

• Update lxml requirement from <=5.2.1 to <=5.2.2 by @dependabot (#205137)

• Bump peaceiris/actions-gh-pages from 3 to 4 in the actions group by @dependabot (#201138)

• Update lxml requirement from <=5.2.0 to <=5.2.1 by @dependabot (#202139)

• Update lxml requirement from <=5.1.0 to <=5.2.0 by @dependabot (#200140)

• Enable native MacOS Apple Silicon runners (#199141)

• Update cibuildwheel GitHub action to 2.17.0 by @dependabot (#198142)

• Update softprops/action-gh-release github action that uploads builds to releases by @dependabot (#197143)

Documentation

• fix reversed links (#203) (#204144)

Contributors:: @alexlancaster

1.0.2] - 2024-02-24
Bug Fixes

• Synchronize with upstream haplo.stats, fix some redundant checks (#196145)

Internal

• customize code security scanning for C extensions (#195146)

• Update numpy requirement from <=1.26.3 to <=1.26.4 by @dependabot (#193147)

Documentation

• Documentation updates including security policy (#194148)

Contributors:: @alexlancaster

1.0.1] - 2024-02-11
Features

• Add [CustomBinning] filtering unit tests for G and P-codes (#186149)

Bug Fixes

• switch to scientific notation when frequencies can’t be displayed as decimals (#192150)

• Port [RandomBinningFilter] to Python 3, include more complex filtering tests (#187151)

5.2. PyPop Release History 55

https://github.com/alexlancaster/pypop/pull/210
https://github.com/alexlancaster/pypop/pull/208
https://github.com/alexlancaster/pypop/releases/tag/v1.1.0
https://github.com/alexlancaster/pypop/pull/206
https://github.com/alexlancaster/pypop/pull/205
https://github.com/alexlancaster/pypop/pull/201
https://github.com/alexlancaster/pypop/pull/202
https://github.com/alexlancaster/pypop/pull/200
https://github.com/alexlancaster/pypop/pull/199
https://github.com/alexlancaster/pypop/pull/198
https://github.com/alexlancaster/pypop/pull/197
https://github.com/alexlancaster/pypop/pull/204
https://github.com/alexlancaster/pypop/releases/tag/v1.0.2
https://github.com/alexlancaster/pypop/pull/196
https://github.com/alexlancaster/pypop/pull/195
https://github.com/alexlancaster/pypop/pull/193
https://github.com/alexlancaster/pypop/pull/194
https://github.com/alexlancaster/pypop/releases/tag/v1.0.1
https://github.com/alexlancaster/pypop/pull/186
https://github.com/alexlancaster/pypop/pull/192
https://github.com/alexlancaster/pypop/pull/187

PyPop User Guide, Release 1.4.0

Internal

• Bump the cibuildwheel version from 2.16.4 to 2.16.5: fixes Windows CI builds by @dependabot (#189152)

• Bump the version of cibuildwheel from 2.16.2 to 2.16.4 by @dependabot (#188153)

• increase test strictness: make test warnings into errors (#185154)

• Enable wheels on aarch64 architecture (#184155)

• Update actions/upload-artifact from 3 to 4 in Build on ARM64 by @dependabot (#183156)

• Streamline continuous integration: reduce number of wheels, concurrency (#182157)

• Parallelize wheel builds, re-enable musllinux wheels for Python 3.9+ (#181158)

• Update lxml requirement from <=5.0.0 to <=5.1.0; disable PyPy 3.7 on Linux by @dependabot (#178159)

• Update numpy requirement from <=1.26.2 to <=1.26.3 by @dependabot (#177160)

• Update lxml requirement from <=4.9.4 to <=5.0.0 by @dependabot (#174161)

• Update lxml requirement from <=4.9.3 to <=4.9.4 by @dependabot (#173162)

• update to v4 of download-artifact / upload-artifact (#172163)

• Bump actions/setup-python from 4 to 5 by @dependabot (#168164)

• Update numpy requirement from <=1.26.1 to <=1.26.2 by @dependabot (#167165)

Documentation

• Link to new preprint in docs (#190166)

• Convert bibliography to bibtex (#176167)

• Convert NEWS.rst to NEWS.md, improve PDF documentation output (#175168)

Contributors:: @alexlancaster

1.0.0] - 2023-11-07
PyPop 1.0.0 is the first official release of PyPop using Python 3, and the first release to be included on PyPI169. In addition to
using modern libraries, there are some new features, such as the new asymmetric LD measures, and better handling of TSV
files, along with the typical slew of bug fixes. Many more changes are of an “under the hood” nature, such as a new unit testing
and documentation framework, and are detailed below. Many people contributed to this latest release, which has been a while
in coming. Thanks especially to all new contributors including Vanessa Sochat, Gordon Webster, Jurriaan H. Spaaks, Karl
Kornel and Michael Mariani. Thanks also to all of our bug reporters, and ongoing contributors, especially Richard Single,
Owen Solberg and Steve Mack.

New features

• PyPop now fully ported to run under Python 3 (thanks to Vanessa Sochat for major patch)

• Added new asymmetric linkage disequilibrium (ALD) calculations (thanks to Richard Single), see Thomson & Single,
2014170for more details. Added in both the plain text (.txt) as well as the 2-locus-summary.tsv TSV file outputs.

• Improved tab-separated values (TSV) output file handling:

– old IHWG headers are disabled by default, so the -disable-ihwg option has been replaced by the
--enable-ihwg option, which will re-enable them.

– popmeta: allow TSV files to be put in separate directory with -o/ --outputdir command-lineoption for saving
generated files.

– pypop: renamed --generate-tsv to --enable-tsv

5.2. PyPop Release History 56

https://github.com/alexlancaster/pypop/pull/189
https://github.com/alexlancaster/pypop/pull/188
https://github.com/alexlancaster/pypop/pull/185
https://github.com/alexlancaster/pypop/pull/184
https://github.com/alexlancaster/pypop/pull/183
https://github.com/alexlancaster/pypop/pull/182
https://github.com/alexlancaster/pypop/pull/181
https://github.com/alexlancaster/pypop/pull/178
https://github.com/alexlancaster/pypop/pull/177
https://github.com/alexlancaster/pypop/pull/174
https://github.com/alexlancaster/pypop/pull/173
https://github.com/alexlancaster/pypop/pull/172
https://github.com/alexlancaster/pypop/pull/168
https://github.com/alexlancaster/pypop/pull/167
https://github.com/alexlancaster/pypop/pull/190
https://github.com/alexlancaster/pypop/pull/176
https://github.com/alexlancaster/pypop/pull/175
https://github.com/alexlancaster/pypop/releases/tag/v1.0.0
https://pypi.org/project/pypop-genomics/
https://doi.org/10.1534/genetics.114.165266
https://doi.org/10.1534/genetics.114.165266

PyPop User Guide, Release 1.4.0

– dynamic generation of TSV files based on XML input, so the list of files is no longer hard-coded (thanks to Steve
Mack for suggestion), this also adds support for haplotypes involving more than 4 loci

• Preliminary support for Genotype List (GL) String (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715123/)

• Added unit-tests using pytest testing framework.

• New documentation system using sphinx, replacing the old DocBook XML, to generate both the website and the PyPop
User Guide (HTML and PDF):

– sphinx-based documentation is now written in ReStructuredText (.rst)

– improve popmeta and other documentation for command-line programs

– documentation additions and improvements from Richard Single, Michael Mariani, Gordon Webster and Steve
Mack

– overhaul release process and add a contribution-guide to the PyPop User Guide.

– update documentation to use new HLA nomenclature throughout

• PyPop now uses numpy in place of the old Numeric library Numpy, and lxml in place of libxml_mod

Bug fixes

• TSV file fixes:

– fix missing columns in TSV files (thanks to Steve Mack for report)

– fix headers in 3 and 4 locus TSV files

– output 2 locus haplotypes in TSV if they are explicitly specified (thanks to Steve Mack)

– 2-locus-haplo.tsv: fixed missing output in ld.d, ld.dprime, ld.chisq, and exp columns (thanks to Nabil
M for the report)

– rename, remove and add some columns headers, including the new ALD measures:

∗ 2-locus-haplo.tsv: rename columns: allele -> haplotype, exp -> haplotype.no-ld.count

∗ 2-locus-haplo.tsv: remove obs and obs.freq columns which were duplicative of haplotype.count
and haplotype.freq, respectively

∗ 2-locus-summary.tsv: add two new ALD measure columns: ald.1_2 and ald.2_1

∗ *-locus-summary.tsv: rename columns for multilocus haplotypes for 3 or more loci, allele ->
haplotype and locus -> loci

• Fix DigitBinning and CustomBinning filters [Filters] (report from Steve Mack)

• Fix issues with using colons in alleles, and other separation issues (thanks to Steve Mack)

• Use ~ as the genotype terminator rather than | (fixes some haplotype estimation bugs)

• Round all haplotype frequencies to 5 decimal places to avoid truncation issues (thanks to Steve Mack for report)

• Restore semi-GUI interactive mode by using built-in TkInter file dialog, and use more informative default “place-
holder” file names

• Fix warnings generated by numpy and re libraries.

• Windows fixes:

– Emhaplofreq will now give identical results on Windows as all other platform (needed to port POSIX-version of
drand48() to Windows).

– Fixed CustomBinning filters that were failing on Windows.

– Enable all unit tests for Windows.

5.2. PyPop Release History 57

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3715123/

PyPop User Guide, Release 1.4.0

Internal

• Replace old getopt with argparse library

• Major code refactoring, including moving code into src directory, and using packages in setup.py

• Added continuous integration via GitHub Actions for releases and website updates

• Prepare package for inclusion in PyPI

• Add code examples used in documentation as unit tests

• Create GitHub action for upload to Zenodo (thanks to Jurriaan H. Spaaks)

• Support for arm64 builds on MacOS, e.g. M1-based Macs (thanks to Owen Solberg for report and extensive testing).

• Remove dependency on psutil, rarely needed.

• Only build wheels on platforms for which binary wheels are available for all dependencies.

0.7.0] - 2008-09-09
New features

• makeNewPopFile option has been changed. This option allows user to generate intermediate output of filtered files.
Now option should be of the format: type:order where type is one of separate-loci or all-loci so that the
user can specify whether a separate file should be generated for each locus (separate-loci) or a single file with all
loci (all-loci). order should be the order in the filtering chain where the matrix is generated, there is no default, for
example, for generating files after the first filter operation use 1.

• New command-line option --generate-tsv, will generate the .dat tab-separated values (TSV) files on the the gen-
erated -out.xml files (aka “popmeta”) directly from pypop without needing to run additional script. Now output from
pypop can be directly read into spreadsheet.

• New feature: add individual genotype tests to Hardy-Weinberg module (gthwe), now computes statis-
tics based on individual genotypes in the HWP table. The [HardyWeinbergGuoThompson] or
[HardyWeinbergGuoThompsonMonteCarlo] options must be enabled in the configuration “.ini” file in order
for these tests to be carried out.

• Major improvements to custom and random binning filters (Owen Solberg).

• New feature: generate homozygosity values using the Ewens-Watterson test for all pairwise loci, or all sites within a
gene for sequence data ([homozygosityEWSlatkinExactPairwise] in .ini file). Note: this really only works for
sequence data where the phase for sites within an allele are known.

• Haplotype and LD estimation module emhaplofreq improvements

– improved memory usage and speed for emhaplofreq module.

– maximum sample size for emhaplofreq module increased from 1023 to 5000 individuals.

– maximum length of allele names increased to 20

Bug fixes

• Support Python 2.4 on GCC 4.0 platforms.

• Add missing initialisation for non-sequence data when processing haplotypes. Thanks to Jill Hollenbach for the report.

• Fix memory leak in xslt translation.

• Various fixes relating to parsing XML output.

• Fixed an incorrect parameter name.

• Handle some missing sections in .ini better. Thanks to Owen Solberg for report.

5.2. PyPop Release History 58

https://github.com/alexlancaster/pypop/releases/tag/PYPOP_SRC-0_7_0

PyPop User Guide, Release 1.4.0

• Various build and installation fixes (SWIG, compilation flags)

• Make name of source package be lowercase “pypop”.

• Change data directory: /usr/share/pypop/ to /usr/share/PyPop/

• Print out warning when maximum length of allele exceeded, rather than crashing. Thanks to Steve Mack for report.

Other issues

• Sequence filter

– In the Sequence filter, add special case for Anthony Nolan HLA data: mark null alleles ending in “N” (e.g. HLA-
B*5127N) as “missing data” (****).

– Also in Sequence, keep track of unsequenced sites separately (via unsequencedSites variable) from “untyped” (aka
“missing data”). Treat unsequencedSite as a unique allele to make sure that those sites don’t get treated as having
a consensus sequence if only one of the sequences in the the set of matches is typed.

– If no matching sequence is found in the MSF files, then return a sequence of * symbols (ie, will be treated as truly
missing data, not untyped alleles.

– Add another special case for HLA data: test for 7 digits in allele names (e.g. if 2402101 is not found insert a zero
after the first 4 digits to form 24020101, and check for that). This is to cope with yet-another HLA nomenclature
change.

• Change semantics of batchsize, make “0” (default) process files separately if only R dat files is enabled. If batchsize not
set explicitly (and therefore 0) set batchsize to 1 is PHYLIP mode is enabled.

0.6.0 - 2005-04-13
New features

• Allow for odd allele counts when processing an allele count data (i.e “semi”-typing). When PyPop is dealing with data
that is originally genotyped, the current default is preserved i.e. we dis-allow individuals that are typed at only allele,
and set allowSemiTyped to false.

• New command-line option -f (long version --filelist) which accepts a file containing a list of files (one per line) to
process (note that this is mutually exclusive with supplying INPUTFILEs, and will abort with an error message if you
supply both simultaneously).

• In batch version, handle multiple INPUTFILEs supplied as command-line arguments and support Unix shell-globbing
syntax (e.g. pypop.py -c config.ini *.pop). (NOTE: This is supported only in batch version, not in the interactive
version, which expects one and only one file supplied by user.

• Allele count files can now be filtered through the filter apparatus (particularly the Sequence and AnthonyNolan) in the
same was as genotype files transparently. [This has been enabled via a code refactor that treats allele count files as
pseudo-genotype files for the purpose of filtering]. This change also resulted in the removal of the obsolete lookup-
table-based homozygosity test.

• Add --disable-ihwg option to popmeta script to disable hardcoded generation of the IHWG header output, and use
the output as defined in the header in the original .pop input text file. This is disabled by default to preserve backwards
compatibility.

• Add --batchsize (-b short version) option for popmeta. Does the processing in “batches”. If set and greater than
one, list of XML files is split into batchsize group. For example, if there are 20 XML files and option is via using (“-b
2” or “–batchsize=2”) then the files will be processed in two batches, each consisting of 10 files. If the number does
not divide evenly, the last list will contain all the “left-over” files. This option is particularly useful with large XML
files that may not fit in memory all at once. Note this option is mutually exclusive with the --enable-PHYLIP option
because the PHYLIP output needs to calculate allele frequencies across all populations before generating files.

5.2. PyPop Release History 59

PyPop User Guide, Release 1.4.0

• New .ini file option: [HardyWeinbergGuoThompsonMonteCarlo]: add a plain Monte-Carlo (randomization, without
the Markov chain test) test for the HardyWeinberg “exact test”. Add code for Guo & Thompson test to distribution (now
under GNU GPL).

Bug fixes

• HardyWeinbergGuoThompson overall p-value test was numerically unstable because it attempted to check for equality
in greater than or equal to constructs (“<=”) which is not reliable in C. Replaced this with a GNU Scientific Library
(GSL) function gsl_fcmp() which compares floats to within an EPSILON (defaults to 1e-6).

• Allow HardyWeinbergGuoThompson test to be run if at least two alleles present (test was originally failing with a
too-few-alleles message if there were not at least 3 alleles). Thanks to Kristie Mather for the report.

• Checks to see if a locus is monomorphic, if it is, it generates an allele summary report, but skips the rest of the single
locus analyses which do not make sense for monomorphic locus. Thanks to Steve Mack and Owen Solberg for the bug
report(s).

• Now builds against recent versions of SWIG (no longer stuck at version 1.3.9), should be compatible with versions of
SWIG > 1.3.10. (Tested against SWIG 1.3.21).

• Homozygosity module: Prevent math errors by in Slatkin’s exact test by forcing the homozygosity to be positive (only
a problem for rare cases, when the result is so close to zero that the floating point algorithms cause a negative result.)

0.5.2 (public beta) - 2004-03-09
Bug fixes

• Add missing RandomBinning.py file to source distribution Thanks to Hazael Maldonado Torres for the bug report.

• Fixed line endings for .bat scripts for Win32 so they work under Windows 98 thanks to Wendy Hartogensis for the bug
report.

0.5.1 (public beta) - 2004-02-26
Changes

• New parameter numInitCond, number of initial conditions by the haplotype estimation and LD algorithm used before
performing permutations. Defaults to 50.

• Remove some LOG messages/diagnostics that were erroneously implying an error to the user (if nothing is wrong, don’t
say anything). Add some more useful messages for what is being done in haplo/LD estimation step.

• Add popmeta.py to the distribution: this is undocumented and unsupported as yet, it is at alpha stage only, use at your
own risk!

Bug fixes

• Remember to output plaintext version of LD for specified loci.

0.5 (public beta) - 2003-12-31
Changes

• All Linux wrapper scripts no longer have .sh file suffixes for consistency with DOS (all DOS bat files can be executed
without specifying the .bat extension).

5.2. PyPop Release History 60

PyPop User Guide, Release 1.4.0

Bug fixes

• Add wrapper scripts for interactive and batch mode for both DOS and Linux so that correct shared libraries are called.

• Pause and wait for user to press a key at end of DOS .bat file so that output can be viewed before window close.

• Set PYTHONHOME in wrapper scripts to prevent messages about missing <prefix> being displayed.

0.4.3beta
Bug fixes

• Fixed bug in processing of popname field. Thanks to Richard Single for the report.

Notes
1. https://orcid.org/0000-0001-5847-5330

2. https://orcid.org/0000-0002-0002-9263

3. https://orcid.org/0000-0001-9820-9547

4. https://orcid.org/0000-0001-5852-0517

5. https://orcid.org/0000-0002-7155-5674

6. https://orcid.org/0000-0001-6054-6505

7. https://orcid.org/0000-0002-4387-3819

8. https://orcid.org/0000-0003-3060-9709

9. https://orcid.org/0000-0002-7064-4069

10. https://orcid.org/0000-0001-5235-4159

11. https://github.com/ystsai

12. https://orcid.org/0009-0006-0162-6066

13. https://orcid.org/0009-0009-2862-0467

14. http://www.gnu.org/licenses/gpl.html

15. https://github.com/alexlancaster/pypop/pull/336

16. https://github.com/alexlancaster/pypop/pull/335

17. https://github.com/alexlancaster/pypop/pull/330

18. https://github.com/alexlancaster/pypop/pull/367

19. https://github.com/alexlancaster/pypop/pull/359

20. https://github.com/alexlancaster/pypop/pull/365

21. https://github.com/alexlancaster/pypop/pull/360

22. https://github.com/alexlancaster/pypop/pull/366

23. https://github.com/alexlancaster/pypop/pull/364

24. https://github.com/alexlancaster/pypop/pull/362

25. https://github.com/alexlancaster/pypop/pull/363

26. https://github.com/alexlancaster/pypop/pull/357

27. https://github.com/alexlancaster/pypop/pull/355

28. https://github.com/alexlancaster/pypop/pull/342

29. https://github.com/alexlancaster/pypop/pull/349

30. https://github.com/alexlancaster/pypop/pull/347

31. https://github.com/alexlancaster/pypop/pull/346

32. https://github.com/alexlancaster/pypop/pull/341

33. https://github.com/alexlancaster/pypop/pull/339

34. https://github.com/alexlancaster/pypop/pull/338

35. https://github.com/alexlancaster/pypop/pull/333

5.2. PyPop Release History 61

PyPop User Guide, Release 1.4.0

36. https://github.com/alexlancaster/pypop/pull/334

37. https://github.com/alexlancaster/pypop/pull/332

38. https://github.com/alexlancaster/pypop/pull/330

39.] https://github.com/alexlancaster/pypop/pull/368

40.] https://github.com/alexlancaster/pypop/pull/336

41.] https://github.com/alexlancaster/pypop/pull/330

42.] https://github.com/alexlancaster/pypop/pull/326

43.] https://github.com/alexlancaster/pypop/pull/328

44.] https://github.com/alexlancaster/pypop/pull/324

45.] https://github.com/alexlancaster/pypop/pull/322

46.] https://github.com/alexlancaster/pypop/pull/321

47.] https://github.com/alexlancaster/pypop/pull/318

48.] https://github.com/alexlancaster/pypop/pull/319

49.] https://github.com/alexlancaster/pypop/pull/317

50.] https://github.com/alexlancaster/pypop/pull/314

51.] https://github.com/alexlancaster/pypop/pull/315

52.] https://github.com/alexlancaster/pypop/pull/312

53.] https://github.com/alexlancaster/pypop/pull/309

54.] https://github.com/alexlancaster/pypop/pull/310

55.] https://github.com/alexlancaster/pypop/pull/307

56.] https://github.com/alexlancaster/pypop/pull/306

57.] https://github.com/alexlancaster/pypop/pull/303

58.] https://github.com/alexlancaster/pypop/pull/299

59.] https://github.com/alexlancaster/pypop/pull/300

60.] https://github.com/alexlancaster/pypop/pull/298

61.] https://github.com/alexlancaster/pypop/pull/291

62.] https://github.com/alexlancaster/pypop/pull/295

63.] https://github.com/alexlancaster/pypop/pull/292

64.] https://github.com/alexlancaster/pypop/pull/294

65.] https://github.com/alexlancaster/pypop/pull/293

66.] https://github.com/alexlancaster/pypop/pull/303

67.] https://github.com/alexlancaster/pypop/pull/296

68.] https://github.com/alexlancaster/pypop/pull/286

69.] https://github.com/alexlancaster/pypop/pull/283

70.] https://github.com/alexlancaster/pypop/pull/282

71.] https://github.com/alexlancaster/pypop/pull/257

72.] https://github.com/alexlancaster/pypop/pull/272

73.] https://github.com/alexlancaster/pypop/pull/256

74.] https://github.com/alexlancaster/pypop/pull/280

75.] https://github.com/alexlancaster/pypop/pull/279

76.] https://github.com/alexlancaster/pypop/pull/275

77.] https://github.com/alexlancaster/pypop/pull/273

78.] https://github.com/alexlancaster/pypop/pull/272

79.] https://github.com/alexlancaster/pypop/pull/270

80.] https://github.com/alexlancaster/pypop/pull/269

81.] https://github.com/alexlancaster/pypop/pull/268

82.] https://github.com/alexlancaster/pypop/pull/265

5.2. PyPop Release History 62

PyPop User Guide, Release 1.4.0

83.] https://github.com/alexlancaster/pypop/pull/264

84.] https://github.com/alexlancaster/pypop/pull/261

85.] https://github.com/alexlancaster/pypop/pull/259

86.] https://github.com/alexlancaster/pypop/pull/260

87.] https://github.com/alexlancaster/pypop/pull/252

88.] https://github.com/alexlancaster/pypop/pull/250

89.] https://github.com/alexlancaster/pypop/pull/235

90.] https://github.com/alexlancaster/pypop/pull/251

91.] https://github.com/alexlancaster/pypop/pull/247

92.] https://github.com/alexlancaster/pypop/pull/244

93.] https://github.com/alexlancaster/pypop/pull/233

94.] https://github.com/alexlancaster/pypop/pull/253

95.] https://github.com/apps/dependabot

96.] https://github.com/alexlancaster/pypop/pull/245

97.] https://github.com/alexlancaster/pypop/pull/242

98.] https://github.com/alexlancaster/pypop/pull/239

99.] https://github.com/alexlancaster/pypop/pull/238

100.] https://github.com/apps/dependabot

101.] https://github.com/alexlancaster/pypop/pull/237

102.] https://github.com/alexlancaster/pypop/pull/236

103.] https://github.com/alexlancaster/pypop/pull/234

104.] https://github.com/apps/dependabot

105.] https://github.com/alexlancaster/pypop/pull/232

106.] https://github.com/apps/dependabot

107.] https://github.com/alexlancaster/pypop/pull/231

108.] https://github.com/apps/dependabot

109.] https://github.com/alexlancaster/pypop/pull/230

110.] https://github.com/apps/dependabot

111.] https://github.com/alexlancaster/pypop/pull/229

112.] https://github.com/alexlancaster/pypop/pull/251

113.] https://github.com/alexlancaster/pypop/pull/247

114.] https://github.com/alexlancaster/pypop/pull/244

115.] https://github.com/alexlancaster/pypop/pull/240

116.] https://github.com/alexlancaster/pypop/pull/228

117.] https://github.com/alexlancaster/pypop/pull/219

118.] https://github.com/alexlancaster/pypop/pull/226

119.] https://github.com/alexlancaster/pypop/pull/227

120.] https://github.com/alexlancaster/pypop/pull/225

121.] https://github.com/alexlancaster/pypop/pull/224

122.] https://github.com/alexlancaster/pypop/pull/223

123.] https://github.com/alexlancaster/pypop/pull/222

124.] https://github.com/alexlancaster/pypop/pull/228

125.] https://github.com/alexlancaster/pypop/pull/220

126.] https://github.com/alexlancaster/pypop/pull/217

127.] https://github.com/alexlancaster/pypop/pull/212

128.] https://github.com/alexlancaster/pypop/pull/218

129.] https://github.com/alexlancaster/pypop/pull/216

5.2. PyPop Release History 63

PyPop User Guide, Release 1.4.0

130.] https://github.com/alexlancaster/pypop/pull/215

131.] https://github.com/alexlancaster/pypop/pull/214

132.] https://github.com/alexlancaster/pypop/pull/213

133.] https://github.com/alexlancaster/pypop/pull/209

134.] https://github.com/alexlancaster/pypop/pull/210

135.] https://github.com/alexlancaster/pypop/pull/208

136.] https://github.com/alexlancaster/pypop/pull/206

137.] https://github.com/alexlancaster/pypop/pull/205

138.] https://github.com/alexlancaster/pypop/pull/201

139.] https://github.com/alexlancaster/pypop/pull/202

140.] https://github.com/alexlancaster/pypop/pull/200

141.] https://github.com/alexlancaster/pypop/pull/199

142.] https://github.com/alexlancaster/pypop/pull/198

143.] https://github.com/alexlancaster/pypop/pull/197

144.] https://github.com/alexlancaster/pypop/pull/204

145.] https://github.com/alexlancaster/pypop/pull/196

146.] https://github.com/alexlancaster/pypop/pull/195

147.] https://github.com/alexlancaster/pypop/pull/193

148.] https://github.com/alexlancaster/pypop/pull/194

149.] https://github.com/alexlancaster/pypop/pull/186

150.] https://github.com/alexlancaster/pypop/pull/192

151.] https://github.com/alexlancaster/pypop/pull/187

152.] https://github.com/alexlancaster/pypop/pull/189

153.] https://github.com/alexlancaster/pypop/pull/188

154.] https://github.com/alexlancaster/pypop/pull/185

155.] https://github.com/alexlancaster/pypop/pull/184

156.] https://github.com/alexlancaster/pypop/pull/183

157.] https://github.com/alexlancaster/pypop/pull/182

158.] https://github.com/alexlancaster/pypop/pull/181

159.] https://github.com/alexlancaster/pypop/pull/178

160.] https://github.com/alexlancaster/pypop/pull/177

161.] https://github.com/alexlancaster/pypop/pull/174

162.] https://github.com/alexlancaster/pypop/pull/173

163.] https://github.com/alexlancaster/pypop/pull/172

164.] https://github.com/alexlancaster/pypop/pull/168

165.] https://github.com/alexlancaster/pypop/pull/167

166.] https://github.com/alexlancaster/pypop/pull/190

167.] https://github.com/alexlancaster/pypop/pull/176

168.] https://github.com/alexlancaster/pypop/pull/175

169.] https://pypi.org/project/pypop-genomics/

170.] https://doi.org/10.1534/genetics.114.165266

5.2. PyPop Release History 64

CHAPTER

SIX

LICENSES

6.1 License terms for PyPop
Except where noted in the source, PyPop is distributed under the terms of the GNU General Public License1(GNU General Public License). The list of
authors and contributors is located in PyPop contributors.

PyPop: Python for Population Genomics

Copyright © 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009 by The Regents of the University of California (Regents). All rights reserved.

All code in this program is copyright the Regents (except where otherwise explicitly mentioned).

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software
Foundation; either version 22of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License (GNU General Public License) for more details.

GNU General Public License
GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

Preamble

The licenses for most software are designed to take away your
freedom to share and change it. By contrast, the GNU General Public
License is intended to guarantee your freedom to share and change free
software--to make sure the software is free for all its users. This
General Public License applies to most of the Free Software
Foundation's software and to any other program whose authors commit to
using it. (Some other Free Software Foundation software is covered by
the GNU Lesser General Public License instead.) You can apply it to
your programs, too.

When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
this service if you wish), that you receive source code or can get it
if you want it, that you can change the software or use pieces of it
in new free programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid
anyone to deny you these rights or to ask you to surrender the rights.
These restrictions translate to certain responsibilities for you if you
distribute copies of the software, or if you modify it.

(continues on next page)

65

https://www.gnu.org/licenses/gpl.html
https://www.gnu.org/licenses/gpl-2.0.html

PyPop User Guide, Release 1.4.0

(continued from previous page)
For example, if you distribute copies of such a program, whether

gratis or for a fee, you must give the recipients all the rights that
you have. You must make sure that they, too, receive or can get the
source code. And you must show them these terms so they know their
rights.

We protect your rights with two steps: (1) copyright the software, and
(2) offer you this license which gives you legal permission to copy,
distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain
that everyone understands that there is no warranty for this free
software. If the software is modified by someone else and passed on, we
want its recipients to know that what they have is not the original, so
that any problems introduced by others will not reflect on the original
authors' reputations.

Finally, any free program is threatened constantly by software
patents. We wish to avoid the danger that redistributors of a free
program will individually obtain patent licenses, in effect making the
program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and
modification follow.

GNU GENERAL PUBLIC LICENSE
TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains
a notice placed by the copyright holder saying it may be distributed
under the terms of this General Public License. The "Program", below,
refers to any such program or work, and a "work based on the Program"
means either the Program or any derivative work under copyright law:
that is to say, a work containing the Program or a portion of it,
either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in
the term "modification".) Each licensee is addressed as "you".

Activities other than copying, distribution and modification are not
covered by this License; they are outside its scope. The act of
running the Program is not restricted, and the output from the Program
is covered only if its contents constitute a work based on the
Program (independent of having been made by running the Program).
Whether that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program's
source code as you receive it, in any medium, provided that you
conspicuously and appropriately publish on each copy an appropriate
copyright notice and disclaimer of warranty; keep intact all the
notices that refer to this License and to the absence of any warranty;
and give any other recipients of the Program a copy of this License
along with the Program.

You may charge a fee for the physical act of transferring a copy, and
you may at your option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion
of it, thus forming a work based on the Program, and copy and
distribute such modifications or work under the terms of Section 1
above, provided that you also meet all of these conditions:

a) You must cause the modified files to carry prominent notices
stating that you changed the files and the date of any change.

b) You must cause any work that you distribute or publish, that in

(continues on next page)

6.1. License terms for PyPop 66

PyPop User Guide, Release 1.4.0

(continued from previous page)
whole or in part contains or is derived from the Program or any
part thereof, to be licensed as a whole at no charge to all third
parties under the terms of this License.

c) If the modified program normally reads commands interactively
when run, you must cause it, when started running for such
interactive use in the most ordinary way, to print or display an
announcement including an appropriate copyright notice and a
notice that there is no warranty (or else, saying that you provide
a warranty) and that users may redistribute the program under
these conditions, and telling the user how to view a copy of this
License. (Exception: if the Program itself is interactive but
does not normally print such an announcement, your work based on
the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If
identifiable sections of that work are not derived from the Program,
and can be reasonably considered independent and separate works in
themselves, then this License, and its terms, do not apply to those
sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based
on the Program, the distribution of the whole must be on the terms of
this License, whose permissions for other licensees extend to the
entire whole, and thus to each and every part regardless of who wrote it.

Thus, it is not the intent of this section to claim rights or contest
your rights to work written entirely by you; rather, the intent is to
exercise the right to control the distribution of derivative or
collective works based on the Program.

In addition, mere aggregation of another work not based on the Program
with the Program (or with a work based on the Program) on a volume of
a storage or distribution medium does not bring the other work under
the scope of this License.

3. You may copy and distribute the Program (or a work based on it,
under Section 2) in object code or executable form under the terms of
Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable
source code, which must be distributed under the terms of Sections
1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three
years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete
machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer
to distribute corresponding source code. (This alternative is
allowed only for noncommercial distribution and only if you
received the program in object code or executable form with such
an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for
making modifications to it. For an executable work, complete source
code means all the source code for all modules it contains, plus any
associated interface definition files, plus the scripts used to
control compilation and installation of the executable. However, as a
special exception, the source code distributed need not include
anything that is normally distributed (in either source or binary
form) with the major components (compiler, kernel, and so on) of the
operating system on which the executable runs, unless that component
itself accompanies the executable.

(continues on next page)

6.1. License terms for PyPop 67

PyPop User Guide, Release 1.4.0

(continued from previous page)

If distribution of executable or object code is made by offering
access to copy from a designated place, then offering equivalent
access to copy the source code from the same place counts as
distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program
except as expressly provided under this License. Any attempt
otherwise to copy, modify, sublicense or distribute the Program is
void, and will automatically terminate your rights under this License.
However, parties who have received copies, or rights, from you under
this License will not have their licenses terminated so long as such
parties remain in full compliance.

5. You are not required to accept this License, since you have not
signed it. However, nothing else grants you permission to modify or
distribute the Program or its derivative works. These actions are
prohibited by law if you do not accept this License. Therefore, by
modifying or distributing the Program (or any work based on the
Program), you indicate your acceptance of this License to do so, and
all its terms and conditions for copying, distributing or modifying
the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the
Program), the recipient automatically receives a license from the
original licensor to copy, distribute or modify the Program subject to
these terms and conditions. You may not impose any further
restrictions on the recipients' exercise of the rights granted herein.
You are not responsible for enforcing compliance by third parties to
this License.

7. If, as a consequence of a court judgment or allegation of patent
infringement or for any other reason (not limited to patent issues),
conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot
distribute so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you
may not distribute the Program at all. For example, if a patent
license would not permit royalty-free redistribution of the Program by
all those who receive copies directly or indirectly through you, then
the only way you could satisfy both it and this License would be to
refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under
any particular circumstance, the balance of the section is intended to
apply and the section as a whole is intended to apply in other
circumstances.

It is not the purpose of this section to induce you to infringe any
patents or other property right claims or to contest validity of any
such claims; this section has the sole purpose of protecting the
integrity of the free software distribution system, which is
implemented by public license practices. Many people have made
generous contributions to the wide range of software distributed
through that system in reliance on consistent application of that
system; it is up to the author/donor to decide if he or she is willing
to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to
be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in
certain countries either by patents or by copyrighted interfaces, the

(continues on next page)

6.1. License terms for PyPop 68

PyPop User Guide, Release 1.4.0

(continued from previous page)
original copyright holder who places the Program under this License
may add an explicit geographical distribution limitation excluding
those countries, so that distribution is permitted only in or among
countries not thus excluded. In such case, this License incorporates
the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions
of the General Public License from time to time. Such new versions will
be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.

Each version is given a distinguishing version number. If the Program
specifies a version number of this License which applies to it and "any
later version", you have the option of following the terms and conditions
either of that version or of any later version published by the Free
Software Foundation. If the Program does not specify a version number of
this License, you may choose any version ever published by the Free Software
Foundation.

10. If you wish to incorporate parts of the Program into other free
programs whose distribution conditions are different, write to the author
to ask for permission. For software which is copyrighted by the Free
Software Foundation, write to the Free Software Foundation; we sometimes
make exceptions for this. Our decision will be guided by the two goals
of preserving the free status of all derivatives of our free software and
of promoting the sharing and reuse of software generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
REPAIR OR CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs

If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
convey the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.

<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>

This program is free software; you can redistribute it and/or modify

(continues on next page)

6.1. License terms for PyPop 69

PyPop User Guide, Release 1.4.0

(continued from previous page)
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this
when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
This is free software, and you are welcome to redistribute it
under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate
parts of the General Public License. Of course, the commands you use may
be called something other than `show w' and `show c'; they could even be
mouse-clicks or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your
school, if any, to sign a "copyright disclaimer" for the program, if
necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
`Gnomovision' (which makes passes at compilers) written by James Hacker.

<signature of Ty Coon>, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into
proprietary programs. If your program is a subroutine library, you may
consider it more useful to permit linking proprietary applications with the
library. If this is what you want to do, use the GNU Lesser General
Public License instead of this License.

6.2 License for PyPop documentation

GNU Free Documentation License
Copyright (C) 2000,2001,2002 Free Software Foundation, Inc. 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA Everyone is
permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and useful document “free” in the sense of freedom: to assure everyone the
effective freedom to copy and redistribute it, with or without modifying it, either commercially or noncommercially. Secondarily, this License preserves for
the author and publisher a way to get credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of “copyleft”, which means that derivative works of the document must themselves be free in the same sense. It complements the GNU
General Public License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because free software needs free documentation: a free program should come
with manuals providing the same freedoms that the software does. But this License is not limited to software manuals; it can be used for any textual work,
regardless of subject matter or whether it is published as a printed book. We recommend this License principally for works whose purpose is instruction or
reference.

APPLICABILITY AND DEFINITIONS

6.2. License for PyPop documentation 70

PyPop User Guide, Release 1.4.0

This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright holder saying it can be distributed under the
terms of this License. Such a notice grants a world-wide, royalty-free license, unlimited in duration, to use that work under the conditions stated herein. The
“Document”, below, refers to any such manual or work. Any member of the public is a licensee, and is addressed as “you”. You accept the license if you
copy, modify or distribute the work in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or a portion of it, either copied verbatim, or with modifications and/or
translated into another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document that deals exclusively with the relationship of the publishers or authors
of the Document to the Document’s overall subject (or to related matters) and contains nothing that could fall directly within that overall subject. (Thus, if
the Document is in part a textbook of mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position regarding them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as being those of Invariant Sections, in the notice that says that the
Document is released under this License. If a section does not fit the above definition of Secondary then it is not allowed to be designated as Invariant. The
Document may contain zero Invariant Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in the notice that says that the Document is
released under this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented in a format whose specification is available to the general public, that
is suitable for revising the document straightforwardly with generic text editors or (for images composed of pixels) generic paint programs or (for drawings)
some widely available drawing editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for input
to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup, has been arranged to thwart or discourage
subsequent modification by readers is not Transparent. An image format is not Transparent if used for any substantial amount of text. A copy that is not
“Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input format, LaTeX input format, SGML or XML using
a publicly available DTD, and standard-conforming simple HTML, PostScript or PDF designed for human modification. Examples of transparent image
formats include PNG, XCF and JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors, SGML or
XML for which the DTD and/or processing tools are not generally available, and the machine-generated HTML, PostScript or PDF produced by some word
processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following pages as are needed to hold, legibly, the material this License requires to
appear in the title page. For works in formats which do not have any title page as such, “Title Page” means the text near the most prominent appearance of
the work’s title, preceding the beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either is precisely XYZ or contains XYZ in parentheses following text
that translates XYZ in another language. (Here XYZ stands for a specific section name mentioned below, such as “Acknowledgements”, “Dedications”,
“Endorsements”, or “History”.) To “Preserve the Title” of such a section when you modify the Document means that it remains a section “Entitled XYZ”
according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the Document. These Warranty Disclaimers are
considered to be included by reference in this License, but only as regards disclaiming warranties: any other implication that these Warranty Disclaimers may
have is void and has no effect on the meaning of this License.

VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that this License, the copyright notices, and
the license notice saying this License applies to the Document are reproduced in all copies, and that you add no other conditions whatsoever to those of this
License. You may not use technical measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.

COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering more than 100, and the Document’s license
notice requires Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover,
and Back-Cover Texts on the back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover must present
the full title with all words of the title equally prominent and visible. You may add other material on the covers in addition. Copying with changes limited to
the covers, as long as they preserve the title of the Document and satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many as fit reasonably) on the actual cover, and
continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a machine-readable Transparent copy along
with each Opaque copy, or state in or with each Opaque copy a computer-network location from which the general network-using public has access to download
using public-standard network protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must take
reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent copy will remain thus accessible at the
stated location until at least one year after the last time you distribute an Opaque copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large number of copies, to give them a chance to
provide you with an updated version of the Document.

6.2. License for PyPop documentation 71

PyPop User Guide, Release 1.4.0

MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above, provided that you release the Modified
Version under precisely this License, with the Modified Version filling the role of the Document, thus licensing distribution and modification of the Modified
Version to whoever possesses a copy of it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of previous versions (which should, if there
were any, be listed in the History section of the Document). You may use the same title as a previous version if the original publisher of that version
gives permission.

B. List on the Title Page, as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version, together
with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five), unless they release you from this
requirement.

C. State on the Title page the name of the publisher of the Modified Version, as the publisher.
D. Preserve all the copyright notices of the Document.
E. Add an appropriate copyright notice for your modifications adjacent to the other copyright notices.
F. Include, immediately after the copyright notices, a license notice giving the public permission to use the Modified Version under the terms of this

License, in the form shown in the Addendum below.
G. Preserve in that license notice the full lists of Invariant Sections and required Cover Texts given in the Document’s license notice.
H. Include an unaltered copy of this License.
I. Preserve the section Entitled “History”, Preserve its Title, and add to it an item stating at least the title, year, new authors, and publisher of the Modified

Version as given on the Title Page. If there is no section Entitled “History” in the Document, create one stating the title, year, authors, and publisher
of the Document as given on its Title Page, then add an item describing the Modified Version as stated in the previous sentence.

J. Preserve the network location, if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These may be placed in the “History” section. You may omit a network
location for a work that was published at least four years before the Document itself, or if the original publisher of the version it refers to gives
permission.

K. For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title of the section, and preserve in the section all the substance and
tone of each of the contributor acknowledgements and/or dedications given therein.

L. Preserve all the Invariant Sections of the Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered
part of the section titles.

M. Delete any section Entitled “Endorsements”. Such a section may not be included in the Modified Version.
N. Do not retitle any existing section to be Entitled “Endorsements” or to conflict in title with any Invariant Section.
O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and contain no material copied from the Document,
you may at your option designate some or all of these sections as invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s
license notice. These titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but endorsements of your Modified Version by various parties–for example,
statements of peer review or that the text has been approved by an organization as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover Text, to the end of the list of Cover Texts
in the Modified Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be added by (or through arrangements made by) any one
entity. If the Document already includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you are acting
on behalf of, you may not add another; but you may replace the old one, on explicit permission from the previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for publicity for or to assert or imply endorsement
of any Modified Version.

COMBINING DOCUMENTS

You may combine the Document with other documents released under this License, under the terms defined in section 4. above for modified versions, provided
that you include in the combination all of the Invariant Sections of all of the original documents, unmodified, and list them all as Invariant Sections of your
combined work in its license notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be replaced with a single copy. If there are
multiple Invariant Sections with the same name but different contents, make the title of each such section unique by adding at the end of it, in parentheses,
the name of the original author or publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list of
Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled “History” in the various original documents, forming one section Entitled “History”; likewise
combine any sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You must delete all sections Entitled “Endorsements”.

COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released under this License, and replace the individual copies of this License in
the various documents with a single copy that is included in the collection, provided that you follow the rules of this License for verbatim copying of each of
the documents in all other respects.

6.2. License for PyPop documentation 72

PyPop User Guide, Release 1.4.0

You may extract a single document from such a collection, and distribute it individually under this License, provided you insert a copy of this License into
the extracted document, and follow this License in all other respects regarding verbatim copying of that document.

AGGREGATION WITH INDEPENDENT WORKS

A compilation of the Document or its derivatives with other separate and independent documents or works, in or on a volume of a storage or distribution
medium, is called an “aggregate” if the copyright resulting from the compilation is not used to limit the legal rights of the compilation’s users beyond what
the individual works permit. When the Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document is less than one half of the entire aggregate,
the Document’s Cover Texts may be placed on covers that bracket the Document within the aggregate, or the electronic equivalent of covers if the Document
is in electronic form. Otherwise they must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations of the Document under the terms of section 4. Replacing Invariant Sections
with translations requires special permission from their copyright holders, but you may include translations of some or all Invariant Sections in addition to
the original versions of these Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and any Warranty
Disclaimers, provided that you also include the original English version of this License and the original versions of those notices and disclaimers. In case of
a disagreement between the translation and the original version of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “History”, the requirement (section 4) to Preserve its Title (section 1) will
typically require changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly provided for under this License. Any other attempt to copy, modify,
sublicense or distribute the Document is void, and will automatically terminate your rights under this License. However, parties who have received copies,
or rights, from you under this License will not have their licenses terminated so long as such parties remain in full compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from time to time. Such new versions will be
similar in spirit to the present version, but may differ in detail to address new problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular numbered version of this License “or any
later version” applies to it, you have the option of following the terms and conditions either of that specified version or of any later version that has been
published (not as a draft) by the Free Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation.

ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the document and put the following copyright and license notices just
after the title page:

Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU
Free Documentation License, Version 1.2 or any later version published by the Free Software Foundation; with no Invariant Sections, no
Front-Cover Texts, and no Back-Cover Texts. A copy of the license is included in the section entitled “GNU Free Documentation License”.

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the “with. . .Texts.” line with this:

with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the Back-Cover Texts being LIST.

If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two alternatives to suit the situation.

If your document contains nontrivial examples of program code, we recommend releasing these examples in parallel under your choice of free software
license, such as the GNU General Public License, to permit their use in free software.

6.2. License for PyPop documentation 73

http://www.gnu.org/copyleft/

PyPop User Guide, Release 1.4.0

Notes
1.] https://www.gnu.org/licenses/gpl.html

2.] https://www.gnu.org/licenses/gpl-2.0.html

6.2. License for PyPop documentation 74

BIBLIOGRAPHY

[CKM+07] Cano, P., Klitz, W., Mack, S. J., Maiers, M., Marsh, S. G. E., Noreen, H., Reed, E. F., Senitzer, D., Setterholm, M.,
Smith, A., and Fernández-Viña, M. Common and well-documented HLA alleles: report of the Ad-Hoc committee
of the american society for histocompatiblity and immunogenetics. Human Immunology, 68(5):392–417, 2007.
doi:10.1016/j.humimm.2007.01.0143.

[CHT+99] Chen, J. J., Hollenbach, J. A., Trachtenberg, E. A., Just, J. J., Carrington, M., Ronningen, K. S., Begovich, A. B.,
King, M.-C., McWeeney, S. K., Mack, S. J., Erlich, H. A., and Thomson, G. Hardy-Weinberg testing for HLA
class II (DRB1, DQA1, DQB1, and DPB1) loci in 26 human ethnic groups. Tissue Antigens, 54(6):533–542,
1999. doi:10.1034/j.1399-0039.1999.540601.x4.

[Cramer46] Cramér, H. Mathematical Methods of Statistics. Princeton University Press, Princeton, NJ, 1946. ISBN 978-0-
691-00547-8.

[DLR77] Dempster, A. P., Laird, N. M., and Rubin, D. B. Maximum Likelihood from Incomplete Data Via the EM Algo-
rithm. Journal of the Royal Statistical Society: Series B (Methodological), 39(1):1–38, 1977. doi:10.1111/j.2517-
6161.1977.tb01600.x5.

[Ewe72] Ewens, W. J. The sampling theory of selectively neutral alleles. Theoretical Population Biology, 3(1):87–112,
1972. doi:10.1016/0040-5809(72)90035-46.

[EL10] Excoffier, L. and Lischer, H. E. L. Arlequin suite ver 3.5: a new series of programs to perform population genetics
analyses under Linux and Windows. Molecular Ecology Resources, 10(3):564–567, 2010. doi:10.1111/j.1755-
0998.2010.02847.x7.

[ES95] Excoffier, L. and Slatkin, M. Maximum-likelihood estimation of molecular haplotype fre-
quencies in a diploid population. Molecular Biology and Evolution, 12(5):921–927, 1995.
doi:10.1093/oxfordjournals.molbev.a0402698.

[GT92] Guo, S. W. and Thompson, E. A. Performing the exact test of Hardy-Weinberg proportion for multiple alleles.
Biometrics, 48(2):361–372, 1992. arXiv:25322969, doi:10.2307/253229610.

[Hed87] Hedrick, P. W. Gametic disequilibrium measures: proceed with caution. Genetics, 117(2):331–341, 1987.
doi:10.1093/genetics/117.2.33111.

[LNM+03] Lancaster, A., Nelson, M. P., Meyer, D., Single, R. M., and Thomson, G. PyPop: a software framework for
population genomics: analyzing large-scale multi-locus genotype data. Pacific Symposium on Biocomputing,
pages 514–525, 2003. URL: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891851/ (accessed on 2024-01-
04)

[LNS+07] Lancaster, A. K., Nelson, M. P., Single, R. M., Meyer, D., and Thomson, G. Software framework for the Biostatis-
tics Core of the International Histocompatibility Working Group. In Hansen, J. A., editor, Immunobiology of the
Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Conference, volume I,
pages 510–517. IHWG Press, Seattle, WA, 2007.

75

https://doi.org/10.1016/j.humimm.2007.01.014
https://doi.org/10.1034/j.1399-0039.1999.540601.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1111/j.2517-6161.1977.tb01600.x
https://doi.org/10.1016/0040-5809(72)90035-4
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1111/j.1755-0998.2010.02847.x
https://doi.org/10.1093/oxfordjournals.molbev.a040269
https://arxiv.org/abs/2532296
https://doi.org/10.2307/2532296
https://doi.org/10.1093/genetics/117.2.331
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3891851/

PyPop User Guide, Release 1.4.0

[LSS+07] Lancaster, A. K., Single, R. M., Solberg, O. D., Nelson, M. P., and Thomson, G. PyPop update – a
software pipeline for large-scale multilocus population genomics. Tissue Antigens, 69(s1):192–197, 2007.
doi:10.1111/j.1399-0039.2006.00769.x12.

[LSM+24] Lancaster, A. K., Single, R. M., Mack, S. J., Sochat, V., Mariani, M. P., and Webster, G. D. Py-
Pop: A mature open-source software pipeline for population genomics. Frontiers in Immunology, 2024.
doi:10.3389/fimmu.2024.137851213.

[MSanchezMazasM+07] Mack, S. J., Sanchez-Mazas, A., Meyer, D., Single, R. M., Tsai, Y., and Erlich, H. A. Methods used
in the generation and preparation of data for analysis in the 13th International Histocompatibility Workshop. In
Hansen, J. A., editor, Immunobiology of the Human MHC: Proceedings of the 13th International Histocompati-
bility Workshop and Conference, volume I, pages 564–579. IHWG Press, Seattle, WA, 2007.

[MSM+07] Meyer, D., Single, R. M., Mack, S. J., Lancaster, A. K., Nelson, M. P., Erlich, H. A., Fernández-Viña, M., and
Thomson, G. Single locus polymorphism of classical HLA genes. In Hansen, J. A., editor, Immunobiology of the
Human MHC: Proceedings of the 13th International Histocompatibility Workshop and Conference, volume I,
pages 653–704. IHWG Press, Seattle, WA, 2007.

[SKE+99] Salamon, H., Klitz, W., Easteal, S., Gao, X., Erlich, H. A., Fernandez-Viña, M., Trachtenberg, E. A., McWeeney,
S. K., Nelson, M. P., and Thomson, G. Evolution of HLA class II molecules: Allelic and amino acid site vari-
ability across populations. Genetics, 152(1):393–400, 1999. doi:10.1093/genetics/152.1.39314.

[SKRE00] Schneider, S., Kueffer, J.-M., Roessli, D., and Excoffier, L. Arlequin: A software for population genetics data
analysis. Ver 2.000. Genetics and Biometry Lab, Dept. of Anthropology, University of Geneva, 2000. URL:
http://cmpg.unibe.ch/software/arlequin/ (accessed on 2024-01-06)

[SMM+07] Single, R. M., Meyer, D., Mack, S. J., Lancaster, A. K., Nelson, M. P., Erlich, H. A., Fernández-Viña, M., and
Thomson, G. Haplotype frequencies and linkage disequilibrium among classical HLA genes. In Hansen, J. A.,
editor, Immunobiology of the Human MHC: Proceedings of the 13th International Histocompatibility Workshop
and Conference, volume I, pages 705–746. IHWG Press, Seattle, WA, 2007.

[SMT07] Single, R. M., Meyer, D., and Thomson, G. Statistical methods for analysis of population genetic data. In Hansen,
J. A., editor, Immunobiology of the Human MHC: Proceedings of the 13th International Histocompatibility
Workshop and Conference, volume I, pages 518–522. IHWG Press, Seattle, WA, 2007.

[Sla94] Slatkin, M. An exact test for neutrality based on the Ewens sampling distribution. Genetics Research,
64(1):71–74, 1994. doi:10.1017/S001667230003256015.

[Sla96] Slatkin, M. A correction to the exact test based on the Ewens sampling distribution. Genetics Research,
68(3):259–260, 1996. doi:10.1017/S001667230003423616.

[SML+08] Solberg, O. D., Mack, S. J., Lancaster, A. K., Single, R. M., Tsai, Y., Sanchez-Mazas, A., and Thomson, G.
Balancing selection and heterogeneity across the classical human leukocyte antigen loci: A meta-analytic review
of 497 population studies. Human Immunology, 69(7):443–464, 2008. doi:10.1016/j.humimm.2008.05.00117.

[TS14] Thomson, G. and Single, R. M. Conditional asymmetric linkage disequilibrium (ALD): extending the bi-allelic
r2 measure. Genetics, 198(1):321–331, 2014. doi:10.1534/genetics.114.16526618.

[Wat78] Watterson, G. A. The homozygosity test of neutrality. Genetics, 88(2):405–417, 1978.
doi:10.1093/genetics/88.2.40519.

Bibliography 76

https://doi.org/10.1111/j.1399-0039.2006.00769.x
https://doi.org/10.3389/fimmu.2024.1378512
https://doi.org/10.1093/genetics/152.1.393
http://cmpg.unibe.ch/software/arlequin/
https://doi.org/10.1017/S0016672300032560
https://doi.org/10.1017/S0016672300034236
https://doi.org/10.1016/j.humimm.2008.05.001
https://doi.org/10.1534/genetics.114.165266
https://doi.org/10.1093/genetics/88.2.405

	Installing PyPop
	Quickstart Guide
	Examples
	Checking version and installation
	Run a minimal dataset:

	Detailed installation instructions
	Install Python 3 and pip
	Install package from PyPI
	Post-install PATH adjustments
	Uninstalling PyPop

	Support and development

	Getting started with PyPop
	Introduction
	Running a population analysis
	Interactive mode (pypop-interactive)
	Command-line mode (pypop)
	Output to different directory
	Supplying multiple .pop files

	Library (programmatic) mode
	What happens when you run PyPop?

	Aggregating results from multiple runs (popmeta)
	The data file
	Sample files
	Missing data

	The configuration file
	A simple configuration file
	[General] settings

	Specifying data formats
	[ParseGenotypeFile]
	[ParseAlleleCountFile]

	Analysis options
	[HardyWeinberg]
	[HardyWeinbergGuoThompson]
	[HomozygosityEWSlatkinExact]
	[Emhaplofreq]

	Advanced options
	[General] advanced options
	[ParseGenotypeFile] advanced options
	[Emhaplofreq] advanced options

	Advanced filtering sections
	[Filters] extra section
	[AnthonyNolan] filter section
	[Sequence] filter section
	[DigitBinning] filter section
	[CustomBinning] filter section

	PyPop API examples
	Command-line interfaces
	pypop usage
	Options for pypop
	TSV output options
	Mutually exclusive input options

	popmeta usage
	Positional Arguments
	Options for popmeta
	Mutually exclusive popmeta options

	Interpreting PyPop output
	Population summary
	Single locus analyses
	Basic allele count information
	Chi-square test for deviation from Hardy-Weinberg proportions (HWP).
	Exact test for deviation from HWP
	The Ewens-Watterson homozygosity test of neutrality

	Multi-locus analyses
	All pairwise LD
	Haplotype frequency estimation

	Contributing to PyPop
	Reporting and requesting
	Did you find a bug?
	Documentation improvements
	Feature requests and feedback

	Making a code contribution
	Fork this repository
	Clone the main repository
	Make a new branch
	Build locally and make your changes
	Keep your branch in sync with upstream
	Use nox for testing and code quality
	Run unit tests
	Run pre-commit checks
	Build distribution packages

	Update AUTHORS.rst
	Make a Pull Request

	Installation for developers
	Install the build environment
	Install build environment via miniconda (recommended)
	Install build environment via system packages (advanced)
	Unix/Linux:
	MacOS X
	Windows

	Build PyPop
	Build-and-install (not recommended for developers)
	Build-and-install developer-mode (recommended for developers)
	Cleaning up build

	Install package from GitHub Releases
	Making a documentation or website contribution
	Overview
	Structure
	Modifying documentation
	Minor modifications
	Major modifications

	Crediting contributors
	AUTHORS.rst, NEWS.md and GitHub Release Notes
	Authorship on Zenodo archives of releases
	Scientific publications (papers)

	Authors and history
	PyPop contributors
	Third-party modules

	PyPop Release History
	1.4.0 - 2026-01-19
	Features
	Bug Fixes
	Internal
	Documentation

	1.3.1 - 2025-10-07
	Internal
	Documentation

	1.3.0 - 2025-09-08
	Features
	Internal

	1.2.2 - 2025-07-28
	Internal
	Documentation

	1.2.1 - 2025-04-29
	Features
	Bug Fixes
	Internal

	1.2.0 - 2025-02-04
	Features
	Bug Fixes
	Internal
	Documentation

	1.1.2 - 2024-11-18
	Features
	Internal
	Documentation

	1.1.1 - 2024-09-10
	Features
	Bug Fixes
	Internal

	1.1.0 - 2024-05-30
	Internal
	Documentation

	1.0.2 - 2024-02-24
	Bug Fixes
	Internal
	Documentation

	1.0.1 - 2024-02-11
	Features
	Bug Fixes
	Internal
	Documentation

	1.0.0 - 2023-11-07
	New features
	Bug fixes
	Internal

	0.7.0 - 2008-09-09
	New features
	Bug fixes
	Other issues

	0.6.0 - 2005-04-13
	New features
	Bug fixes

	0.5.2 (public beta) - 2004-03-09
	Bug fixes

	0.5.1 (public beta) - 2004-02-26
	Changes
	Bug fixes

	0.5 (public beta) - 2003-12-31
	Changes
	Bug fixes

	0.4.3beta
	Bug fixes

	Licenses
	License terms for PyPop
	GNU General Public License

	License for PyPop documentation
	GNU Free Documentation License

	Bibliography

